Robust Symmetry Detection via Riemannian Langevin Dynamics
- URL: http://arxiv.org/abs/2410.02786v1
- Date: Wed, 18 Sep 2024 02:28:20 GMT
- Title: Robust Symmetry Detection via Riemannian Langevin Dynamics
- Authors: Jihyeon Je, Jiayi Liu, Guandao Yang, Boyang Deng, Shengqu Cai, Gordon Wetzstein, Or Litany, Leonidas Guibas,
- Abstract summary: We propose a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling.
Specifically, we apply Langevin dynamics to a symmetry space to enhance robustness against noise.
We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries.
- Score: 39.342336146118015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symmetries are ubiquitous across all kinds of objects, whether in nature or in man-made creations. While these symmetries may seem intuitive to the human eye, detecting them with a machine is nontrivial due to the vast search space. Classical geometry-based methods work by aggregating "votes" for each symmetry but struggle with noise. In contrast, learning-based methods may be more robust to noise, but often overlook partial symmetries due to the scarcity of annotated data. In this work, we address this challenge by proposing a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling. Specifically, we apply Langevin dynamics to a redefined symmetry space to enhance robustness against noise. We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries. Moreover, we demonstrate the utility of our detected symmetries in various downstream tasks, such as compression and symmetrization of noisy shapes.
Related papers
- Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
We investigate the impact of neural parameter symmetries by introducing new neural network architectures.
We develop two methods, with some provable guarantees, of modifying standard neural networks to reduce parameter space symmetries.
Our experiments reveal several interesting observations on the empirical impact of parameter symmetries.
arXiv Detail & Related papers (2024-05-30T16:32:31Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Symmetry Induces Structure and Constraint of Learning [0.0]
We unveil the importance of the loss function symmetries in affecting, if not deciding, the learning behavior of machine learning models.
Common instances of mirror symmetries in deep learning include rescaling, rotation, and permutation symmetry.
We show that the theoretical framework can explain intriguing phenomena, such as the loss of plasticity and various collapse phenomena in neural networks.
arXiv Detail & Related papers (2023-09-29T02:21:31Z) - Towards Symmetry-Aware Generation of Periodic Materials [64.21777911715267]
We propose SyMat, a novel material generation approach that can capture physical symmetries of periodic material structures.
SyMat generates atom types and lattices of materials through generating atom type sets, lattice lengths and lattice angles with a variational auto-encoder model.
We show that SyMat is theoretically invariant to all symmetry transformations on materials and demonstrate that SyMat achieves promising performance on random generation and property optimization tasks.
arXiv Detail & Related papers (2023-07-06T01:05:34Z) - Regularizing Towards Soft Equivariance Under Mixed Symmetries [23.603875905608565]
We present a regularizer-based method for building a model for a dataset with mixed approximate symmetries.
We show that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
arXiv Detail & Related papers (2023-06-01T05:33:41Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Machine-learning hidden symmetries [0.0]
We present an automated method for finding hidden symmetries, defined as symmetries that become manifest only in a new coordinate system that must be discovered.
Its core idea is to quantify asymmetry as violation of certain partial differential equations, and to numerically minimize such violation over the space of all invertible transformations, parametrized as invertible neural networks.
arXiv Detail & Related papers (2021-09-20T17:55:02Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.