論文の概要: Detection of Malaria Vector Breeding Habitats using Topographic Models
- arxiv url: http://arxiv.org/abs/2011.13714v2
- Date: Tue, 16 Jul 2024 10:05:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 00:37:39.509799
- Title: Detection of Malaria Vector Breeding Habitats using Topographic Models
- Title(参考訳): 地形モデルを用いたマラリアベクター飼育地の検出
- Authors: Aishwarya Jadhav,
- Abstract要約: 本研究では,地球規模で利用可能なDEMデータに基づく実用的な地形モデルを提案する。
ガーナのオプアシ地域を調査し,様々な地形特性が異なる水域に与える影響について検討した。
我々の最良モデルは、小水位検出に地形変数を用いた以前の試みよりも優れていた。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Treatment of stagnant water bodies that act as a breeding site for malarial vectors is a fundamental step in most malaria elimination campaigns. However, identification of such water bodies over large areas is expensive, labour-intensive and time-consuming and hence, challenging in countries with limited resources. Practical models that can efficiently locate water bodies can target the limited resources by greatly reducing the area that needs to be scanned by the field workers. To this end, we propose a practical topographic model based on easily available, global, high-resolution DEM data to predict locations of potential vector-breeding water sites. We surveyed the Obuasi region of Ghana to assess the impact of various topographic features on different types of water bodies and uncover the features that significantly influence the formation of aquatic habitats. We further evaluate the effectiveness of multiple models. Our best model significantly outperforms earlier attempts that employ topographic variables for detection of small water sites, even the ones that utilize additional satellite imagery data and demonstrates robustness across different settings.
- Abstract(参考訳): マラリアベクターの繁殖地として機能する停滞した水域の処理は、ほとんどのマラリア除去キャンペーンの基本的なステップである。
しかし、大規模な水域の特定は高価であり、労働集約的で時間を要するため、資源が限られている国では困難である。
水体を効率的に発見できる実用的なモデルは、現場労働者がスキャンする必要がある領域を大幅に減らし、限られた資源を標的にすることができる。
そこで本研究では,可能でグローバルで高解像度なDEMデータに基づく実用的な地形モデルを提案する。
ガーナのオプアシ地域を調査し,様々な地形特性が異なる水域に与える影響を調査し,水生生物形成に大きな影響を及ぼす特徴を明らかにする。
複数のモデルの有効性をさらに評価する。
我々の最良モデルは、衛星画像データを利用し、異なる設定で堅牢性を示すものでさえも、小さな水面の検出に地形変数を用いた以前の試みよりも大幅に優れています。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - GLH-Water: A Large-Scale Dataset for Global Surface Water Detection in
Large-Size Very-High-Resolution Satellite Imagery [2.342488890032597]
本稿では,250個の衛星画像と手動による表層水アノテーションからなるGLH-waterデータセットを提案する。
それぞれの画像サイズは12,800ドル(約12,800円)で、空間解像度0.3mの12,800ピクセル。
GLH-waterのベンチマークを構築するために,代表表面水検出モデル,一般的なセマンティックセグメンテーションモデル,超高分解能セグメンテーションモデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-16T13:35:56Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
本研究は,UAV空中画像中の浸水領域を特定するための2つのアプローチを提案する。
最初のアプローチは、テクスチャベースの教師なしセグメンテーションを使用して、浸水した地域を検出する。
2つ目は、テクスチャ機能に人工ニューラルネットワークを使用して、画像が浸水して浮かばないものとして分類する。
論文 参考訳(メタデータ) (2022-10-04T13:11:44Z) - Autonomous Mosquito Habitat Detection Using Satellite Imagery and
Convolutional Neural Networks for Disease Risk Mapping [0.0]
モスキトベクターは毎年100万人以上の死者を出す病気の感染で知られている。
ドローン、UAV、その他の空中撮像技術といった現代のアプローチは、実装にコストがかかり、より精密な空間スケールでのみ正確である。
提案した畳み込みニューラルネットワーク(CNN)アプローチは、疾病リスクマッピングや、よりグローバルなスケールでの予防的取り組みのガイドに応用することができる。
論文 参考訳(メタデータ) (2022-03-09T00:54:59Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Towards Adaptive Benthic Habitat Mapping [9.904746542801838]
本研究では,効率的な自律下水車両(AUV)探査計画に生息環境モデルを用いる方法を示す。
ベイズニューラルネットワークは、広範囲な水量測定データを与えられたとき、視覚的に派生した生息地クラスを予測するために使用される。
これらの構造的不確実性推定が、より少ないサンプルでモデルを改善するためにどのように利用できるかを実証する。
論文 参考訳(メタデータ) (2020-06-20T01:03:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。