論文の概要: Investigating Human Response, Behaviour, and Preference in Joint-Task
Interaction
- arxiv url: http://arxiv.org/abs/2011.14016v1
- Date: Fri, 27 Nov 2020 22:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 02:03:14.635595
- Title: Investigating Human Response, Behaviour, and Preference in Joint-Task
Interaction
- Title(参考訳): 協調作業における人間の反応・行動・嗜好調査
- Authors: Alan Lindsay, Bart Craenen, Sara Dalzel-Job, Robin L. Hill, Ronald P.
A. Petrick
- Abstract要約: 我々は、説明可能な計画(XAIP)エージェントと相互作用する人間の行動と反応を調べる実験を設計した。
また,シミュレーションユーザに対する2つのエージェントの挙動を実証分析により検討した。
- 参考スコア(独自算出の注目度): 3.774610219328564
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human interaction relies on a wide range of signals, including non-verbal
cues. In order to develop effective Explainable Planning (XAIP) agents it is
important that we understand the range and utility of these communication
channels. Our starting point is existing results from joint task interaction
and their study in cognitive science. Our intention is that these lessons can
inform the design of interaction agents -- including those using planning
techniques -- whose behaviour is conditioned on the user's response, including
affective measures of the user (i.e., explicitly incorporating the user's
affective state within the planning model). We have identified several concepts
at the intersection of plan-based agent behaviour and joint task interaction
and have used these to design two agents: one reactive and the other partially
predictive. We have designed an experiment in order to examine human behaviour
and response as they interact with these agents. In this paper we present the
designed study and the key questions that are being investigated. We also
present the results from an empirical analysis where we examined the behaviour
of the two agents for simulated users.
- Abstract(参考訳): 人間の相互作用は、非言語的手がかりを含む幅広い信号に依存する。
効果的な説明可能計画(XAIP)エージェントを開発するためには,これらの通信チャネルの範囲と有用性を理解することが重要である。
我々の出発点は、共同作業相互作用と認知科学研究の既存の成果である。
私たちの意図は、これらのレッスンは、ユーザの感情的尺度(つまり、ユーザの感情的状態を計画モデルに明示的に組み込む)を含む、ユーザの反応に応じて振る舞いを条件付けている、計画手法の使用を含むインタラクションエージェントの設計を通知できることです。
我々は計画に基づくエージェントの動作と共同作業の相互作用の交差点でいくつかの概念を特定し、これらを用いて2つのエージェントを設計した。
我々はこれらのエージェントと相互作用する人間の行動と反応を調べる実験を設計した。
本稿では,デザインされた研究と,検討中の重要な疑問について述べる。
また,シミュレーションユーザに対する2つのエージェントの挙動を実証分析により検討した。
関連論文リスト
- Implementation and Application of an Intelligibility Protocol for Interaction with an LLM [0.9187505256430948]
我々の関心は、機械学習エンジンと対話する人間-専門家を含む対話型システムの構築である。
これは、科学、環境、医学などにおける複雑な問題に対処する場合に関係している。
本稿では,汎用実装のアルゴリズム記述と,その利用に関する予備実験を2つの異なる領域で実施する。
論文 参考訳(メタデータ) (2024-10-27T21:20:18Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Automatic Context-Driven Inference of Engagement in HMI: A Survey [6.479224589451863]
本稿では,人間と機械の相互作用に関するエンゲージメント推論について述べる。
これには、学際的定義、エンゲージメントコンポーネントと要因、公開データセット、地上真実の評価、そして最も一般的に使用される機能と方法が含まれる。
これは、信頼性の高いコンテキスト認識エンゲージメント推論機能を備えた、将来の人間と機械のインタラクションインターフェースの開発のためのガイドとして機能する。
論文 参考訳(メタデータ) (2022-09-30T10:46:13Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - CogIntAc: Modeling the Relationships between Intention, Emotion and
Action in Interactive Process from Cognitive Perspective [15.797390372732973]
個人間相互作用の新たな認知枠組みを提案する。
フレームワークの中核は、個人が内的意図によって駆動される外部行動を通じて相互作用を達成することである。
論文 参考訳(メタデータ) (2022-05-07T03:54:51Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
本研究では,人間と学習の継続する予測エージェントの相互作用が,エージェントの能力の発達とともにどのように発達するかを検討する。
我々は、強化学習(RL)アルゴリズムから学習した予測が人間の予測を増大させる仮想現実環境と時間ベースの予測タスクを開発する。
以上の結果から,人的信頼はエージェントとの早期の相互作用に影響され,信頼が戦略的行動に影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-14T22:46:44Z) - Learning Proxemic Behavior Using Reinforcement Learning with Cognitive
Agents [1.0635883951034306]
プロキシミクス(英: Proxemics)は、人や動物の空間行動を研究する非言語コミュニケーションの一分野である。
本研究では, エージェントが環境中でどのように振る舞うかを, 確率的行動に基づいて検討する。
論文 参考訳(メタデータ) (2021-08-08T20:45:34Z) - SPA: Verbal Interactions between Agents and Avatars in Shared Virtual
Environments using Propositional Planning [61.335252950832256]
SPA(Sense-Plan-Ask)は、仮想的な仮想環境において、仮想的な人間のようなエージェントとユーザアバターの間の言語的対話を生成する。
提案アルゴリズムは実行時コストを小さくし,自然言語通信を利用せずにエージェントよりも効率的に目標を達成できることが判明した。
論文 参考訳(メタデータ) (2020-02-08T23:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。