Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models
- URL: http://arxiv.org/abs/2312.13307v2
- Date: Tue, 2 Jan 2024 02:41:04 GMT
- Title: Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models
- Authors: Wenhao Li, Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Chang Xu
- Abstract summary: We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
- Score: 62.155612146799314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable efficacy in various generative
tasks with the predictive prowess of denoising model. Currently, these models
employ a uniform denoising approach across all timesteps. However, the inherent
variations in noisy latents at each timestep lead to conflicts during training,
constraining the potential of diffusion models. To address this challenge, we
propose a novel two-stage training strategy termed Step-Adaptive Training. In
the initial stage, a base denoising model is trained to encompass all
timesteps. Subsequently, we partition the timesteps into distinct groups,
fine-tuning the model within each group to achieve specialized denoising
capabilities. Recognizing that the difficulties of predicting noise at
different timesteps vary, we introduce a diverse model size requirement. We
dynamically adjust the model size for each timestep by estimating task
difficulty based on its signal-to-noise ratio before fine-tuning. This
adjustment is facilitated by a proxy-based structural importance assessment
mechanism, enabling precise and efficient pruning of the base denoising model.
Our experiments validate the effectiveness of the proposed training strategy,
demonstrating an improvement in the FID score on CIFAR10 by over 0.3 while
utilizing only 80\% of the computational resources. This innovative approach
not only enhances model performance but also significantly reduces
computational costs, opening new avenues for the development and application of
diffusion models.
Related papers
- Stable Consistency Tuning: Understanding and Improving Consistency Models [40.2712218203989]
Diffusion models achieve superior generation quality but suffer from slow generation speed due to iterative nature of denoising.
consistency models, a new generative family, achieve competitive performance with significantly faster sampling.
We propose a novel framework for understanding consistency models by modeling the denoising process of the diffusion model as a Markov Decision Process (MDP) and framing consistency model training as the value estimation through Temporal Difference(TD) Learning.
arXiv Detail & Related papers (2024-10-24T17:55:52Z) - Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning [0.0]
Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives.
We exploit the hierarchical nature of diffusion models (DMs) and train them dynamically at each epoch with a tailored RL method.
We show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
arXiv Detail & Related papers (2024-10-10T19:06:23Z) - Decouple-Then-Merge: Towards Better Training for Diffusion Models [45.89372687373466]
Diffusion models are trained by learning a sequence of models that reverse each step of noise corruption.
This work proposes a Decouple-then-Merge (DeMe) framework, which begins with a pretrained model and finetunes separate models tailored to specific timesteps.
arXiv Detail & Related papers (2024-10-09T08:19:25Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Self-Adapting Noise-Contrastive Estimation for Energy-Based Models [0.0]
Training energy-based models with noise-contrastive estimation (NCE) is theoretically feasible but practically challenging.
Previous works have explored modelling the noise distribution as a separate generative model, and then concurrently training this noise model with the EBM.
This thesis proposes a self-adapting NCE algorithm which uses static instances of the EBM along its training trajectory as the noise distribution.
arXiv Detail & Related papers (2022-11-03T15:17:43Z) - Noise Estimation for Generative Diffusion Models [91.22679787578438]
In this work, we present a simple and versatile learning scheme that can adjust the noise parameters for any given number of steps.
Our approach comes at a negligible computation cost.
arXiv Detail & Related papers (2021-04-06T15:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.