Revisiting Ensembles in an Adversarial Context: Improving Natural
Accuracy
- URL: http://arxiv.org/abs/2002.11572v1
- Date: Wed, 26 Feb 2020 15:45:58 GMT
- Title: Revisiting Ensembles in an Adversarial Context: Improving Natural
Accuracy
- Authors: Aditya Saligrama and Guillaume Leclerc
- Abstract summary: There is still a significant gap in natural accuracy between robust and non-robust models.
We consider a number of ensemble methods designed to mitigate this performance difference.
We consider two schemes, one that combines predictions from several randomly robust models, and the other that fuses features from robust and standard models.
- Score: 5.482532589225552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A necessary characteristic for the deployment of deep learning models in real
world applications is resistance to small adversarial perturbations while
maintaining accuracy on non-malicious inputs. While robust training provides
models that exhibit better adversarial accuracy than standard models, there is
still a significant gap in natural accuracy between robust and non-robust
models which we aim to bridge. We consider a number of ensemble methods
designed to mitigate this performance difference. Our key insight is that model
trained to withstand small attacks, when ensembled, can often withstand
significantly larger attacks, and this concept can in turn be leveraged to
optimize natural accuracy. We consider two schemes, one that combines
predictions from several randomly initialized robust models, and the other that
fuses features from robust and standard models.
Related papers
- Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
We propose Pre-trained Model Guided Adversarial Fine-Tuning (PMG-AFT) to enhance the model's zero-shot adversarial robustness.
Our approach consistently improves clean accuracy by an average of 8.72%.
arXiv Detail & Related papers (2024-01-09T04:33:03Z) - Vanilla Feature Distillation for Improving the Accuracy-Robustness
Trade-Off in Adversarial Training [37.5115141623558]
We propose a Vanilla Feature Distillation Adversarial Training (VFD-Adv) to guide adversarial training towards higher accuracy.
A key advantage of our method is that it can be universally adapted to and boost existing works.
arXiv Detail & Related papers (2022-06-05T11:57:10Z) - Jacobian Ensembles Improve Robustness Trade-offs to Adversarial Attacks [5.70772577110828]
We propose a novel approach, Jacobian Ensembles, to increase the robustness against UAPs.
Our results show that Jacobian Ensembles achieves previously unseen levels of accuracy and robustness.
arXiv Detail & Related papers (2022-04-19T08:04:38Z) - Adversarial robustness for latent models: Revisiting the robust-standard
accuracies tradeoff [12.386462516398472]
adversarial training is often observed to drop the standard test accuracy.
In this paper, we argue that this tradeoff is mitigated when the data enjoys a low-dimensional structure.
We show that as the manifold dimension to the ambient dimension decreases, one can obtain models that are nearly optimal with respect to both, the standard accuracy and the robust accuracy measures.
arXiv Detail & Related papers (2021-10-22T17:58:27Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
adversarial examples have been long considered a real threat to machine learning models.
We propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models.
arXiv Detail & Related papers (2021-02-09T20:07:13Z) - Adversarial Learning with Cost-Sensitive Classes [7.6596177815175475]
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning.
This paper proposes a framework combining cost-sensitive classification and adversarial learning together to train a model that can distinguish between protected and unprotected classes.
arXiv Detail & Related papers (2021-01-29T03:15:40Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
arXiv Detail & Related papers (2020-11-28T00:08:45Z) - Adversarial Concurrent Training: Optimizing Robustness and Accuracy
Trade-off of Deep Neural Networks [13.041607703862724]
We propose Adversarial Concurrent Training (ACT) to train a robust model in conjunction with a natural model in a minimax game.
ACT achieves 68.20% standard accuracy and 44.29% robustness accuracy under a 100-iteration untargeted attack.
arXiv Detail & Related papers (2020-08-16T22:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.