Robotic grasp detection using a novel two-stage approach
- URL: http://arxiv.org/abs/2011.14123v1
- Date: Sat, 28 Nov 2020 12:26:35 GMT
- Title: Robotic grasp detection using a novel two-stage approach
- Authors: Zhe Chu, Mengkai Hu, Xiangyu Chen
- Abstract summary: Deep learning has been successfully applied to robotic grasp detection.
We propose a two-stage approach using particle estimator (PSO) candidate swarm and CNN to detect the most likely grasp.
Our approach achieved an accuracy of 92.8% on the Cornell Grasp dataset.
- Score: 5.595910672022999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning has been successfully applied to robotic grasp
detection. Based on convolutional neural networks (CNNs), there have been lots
of end-to-end detection approaches. But end-to-end approaches have strict
requirements for the dataset used for training the neural network models and
it's hard to achieve in practical use. Therefore, we proposed a two-stage
approach using particle swarm optimizer (PSO) candidate estimator and CNN to
detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the
Cornell Grasp Dataset, which leaped into the front ranks of the existing
approaches and is able to run at real-time speeds. After a small change of the
approach, we can predict multiple grasps per object in the meantime so that an
object can be grasped in a variety of ways.
Related papers
- Graspness Discovery in Clutters for Fast and Accurate Grasp Detection [57.81325062171676]
"graspness" is a quality based on geometry cues that distinguishes graspable areas in cluttered scenes.
We develop a neural network named cascaded graspness model to approximate the searching process.
Experiments on a large-scale benchmark, GraspNet-1Billion, show that our method outperforms previous arts by a large margin.
arXiv Detail & Related papers (2024-06-17T02:06:47Z) - Adaptive Sampling for Deep Learning via Efficient Nonparametric Proxies [35.29595714883275]
We develop an efficient sketch-based approximation to the Nadaraya-Watson estimator.
Our sampling algorithm outperforms the baseline in terms of wall-clock time and accuracy on four datasets.
arXiv Detail & Related papers (2023-11-22T18:40:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
We study approaches to improve uncertainty property of a single network, based on a single, deterministic representation.
We propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection.
arXiv Detail & Related papers (2022-05-01T05:46:13Z) - A Two-Block RNN-based Trajectory Prediction from Incomplete Trajectory [14.725386295605666]
We introduce a two-block RNN model that approximates the inference steps of the Bayesian filtering framework.
We show that the proposed model improves the prediction accuracy compared to the three baseline imputation methods.
We also show that our proposed method can achieve better prediction compared to the baselines when there is no miss-detection.
arXiv Detail & Related papers (2022-03-14T13:39:44Z) - CDN-MEDAL: Two-stage Density and Difference Approximation Framework for
Motion Analysis [3.337126420148156]
We propose a novel, two-stage method of change detection with two convolutional neural networks.
Our two-stage framework contains approximately 3.5K parameters in total but still maintains rapid convergence to intricate motion patterns.
arXiv Detail & Related papers (2021-06-07T16:39:42Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
Current object detectors are difficult to strike a balance between high accuracy and fast inference speed.
We present an efficient and robust fully convolutional neural network model to perform robotic grasping pose estimation.
The network is an order of magnitude smaller than other excellent algorithms.
arXiv Detail & Related papers (2021-01-25T16:36:53Z) - 2nd Place Scheme on Action Recognition Track of ECCV 2020 VIPriors
Challenges: An Efficient Optical Flow Stream Guided Framework [57.847010327319964]
We propose a data-efficient framework that can train the model from scratch on small datasets.
Specifically, by introducing a 3D central difference convolution operation, we proposed a novel C3D neural network-based two-stream framework.
It is proved that our method can achieve a promising result even without a pre-trained model on large scale datasets.
arXiv Detail & Related papers (2020-08-10T09:50:28Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
We propose a proposal-based object detector, aiming at detecting highly-overlapped instances in crowded scenes.
The key of our approach is to let each proposal predict a set of correlated instances rather than a single one in previous proposal-based frameworks.
Our detector can obtain 4.9% AP gains on challenging CrowdHuman dataset and 1.0% $textMR-2$ improvements on CityPersons dataset.
arXiv Detail & Related papers (2020-03-20T09:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.