A Backward SDE Method for Uncertainty Quantification in Deep Learning
- URL: http://arxiv.org/abs/2011.14145v2
- Date: Sun, 4 Apr 2021 01:42:45 GMT
- Title: A Backward SDE Method for Uncertainty Quantification in Deep Learning
- Authors: Richard Archibald, Feng Bao, Yanzhao Cao, and He Zhang
- Abstract summary: We develop a probabilistic machine learning method, which formulates a class of neural networks by an optimal control problem.
An efficient descent algorithm is introduced under the maximum principle framework.
- Score: 9.7140720884508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a probabilistic machine learning method, which formulates a class
of stochastic neural networks by a stochastic optimal control problem. An
efficient stochastic gradient descent algorithm is introduced under the
stochastic maximum principle framework. Numerical experiments for applications
of stochastic neural networks are carried out to validate the effectiveness of
our methodology.
Related papers
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Beyond Expectations: Learning with Stochastic Dominance Made Practical [88.06211893690964]
dominance models risk-averse preferences for decision making with uncertain outcomes.
Despite theoretically appealing, the application of dominance in machine learning has been scarce.
We first generalize the dominance concept to enable feasible comparisons between any arbitrary pair of random variables.
We then develop a simple and efficient approach for finding the optimal solution in terms of dominance.
arXiv Detail & Related papers (2024-02-05T03:21:23Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A deep learning based surrogate model for stochastic simulators [0.0]
We propose a deep learning-based surrogate model for simulators.
We utilize conditional maximum mean discrepancy (CMMD) as the loss-function.
Results obtained indicate the excellent performance of the proposed approach.
arXiv Detail & Related papers (2021-10-24T11:38:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - An Efficient Algorithm for Deep Stochastic Contextual Bandits [10.298368632706817]
In contextual bandit problems, an agent selects an action based on certain observed context to maximize the reward over iterations.
Recently there have been a few studies using a deep neural network (DNN) to predict the expected reward for an action, and is trained by a gradient based method.
arXiv Detail & Related papers (2021-04-12T16:34:43Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Stochastic gradient descent with random learning rate [0.0]
We propose to optimize neural networks with a uniformly-distributed random learning rate.
By comparing the random learning rate protocol with cyclic and constant protocols, we suggest that the random choice is generically the best strategy in the small learning rate regime.
We provide supporting evidence through experiments on both shallow, fully-connected and deep, convolutional neural networks for image classification on the MNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2020-03-15T21:36:46Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
We propose a simple literature-based method for the efficient approximation of gradients in neural ODE models.
We compare it with the reverse dynamic method to train neural ODEs on classification, density estimation, and inference approximation tasks.
arXiv Detail & Related papers (2020-03-11T13:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.