論文の概要: Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration
- arxiv url: http://arxiv.org/abs/2011.14229v3
- Date: Fri, 4 Feb 2022 21:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 19:30:23.667543
- Title: Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration
- Title(参考訳): diffeomorphic image registrationにおける正規化予測のためのディープラーニング
- Authors: Jian Wang, Miaomiao Zhang
- Abstract要約: 微分同相変換の滑らかさを制御するパラメータを自動的に決定する新しいフレームワークを導入する。
画像登録の正規化パラメータとペア画像間のマッピングを学習する深層畳み込みニューラルネットワーク(CNN)に基づく予測モデルを開発した。
実験結果から,本モデルは画像登録のための適切な正規化パラメータを予測できるだけでなく,時間とメモリ効率の面でネットワークトレーニングを改善することが示唆された。
- 参考スコア(独自算出の注目度): 8.781861951759948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a predictive model for estimating regularization
parameters of diffeomorphic image registration. We introduce a novel framework
that automatically determines the parameters controlling the smoothness of
diffeomorphic transformations. Our method significantly reduces the effort of
parameter tuning, which is time and labor-consuming. To achieve the goal, we
develop a predictive model based on deep convolutional neural networks (CNN)
that learns the mapping between pairwise images and the regularization
parameter of image registration. In contrast to previous methods that estimate
such parameters in a high-dimensional image space, our model is built in an
efficient bandlimited space with much lower dimensions. We demonstrate the
effectiveness of our model on both 2D synthetic data and 3D real brain images.
Experimental results show that our model not only predicts appropriate
regularization parameters for image registration, but also improving the
network training in terms of time and memory efficiency.
- Abstract(参考訳): 本稿では, 微分型画像登録の正規化パラメータを推定するための予測モデルを提案する。
微分同相変換の滑らかさを制御するパラメータを自動的に決定する新しいフレームワークを導入する。
提案手法は,時間と労力のかかるパラメータチューニングの労力を大幅に削減する。
目的を達成するために,両画像間のマッピングと画像登録の正規化パラメータを学習する深層畳み込みニューラルネットワーク(CNN)に基づく予測モデルを開発した。
このようなパラメータを高次元の画像空間で推定する従来の手法とは対照的に、我々のモデルはより低次元の効率的な帯域制限空間に構築されている。
2次元合成データと3次元実脳画像の両方において,本モデルの有効性を示す。
実験の結果,本モデルは画像登録に適した正規化パラメータを予測できるだけでなく,ネットワークトレーニングの時間とメモリ効率も向上した。
関連論文リスト
- Calibrated Cache Model for Few-Shot Vision-Language Model Adaptation [36.45488536471859]
類似性は、ラベルのない画像を使用することで画像と画像の類似性を洗練する。
重みは、トレーニングサンプル間の関係を適切にモデル化するために、精度行列を重み関数に導入する。
GPの複雑さを低減するため,グループベースの学習戦略を提案する。
論文 参考訳(メタデータ) (2024-10-11T15:12:30Z) - $\texttt{NePhi}$: Neural Deformation Fields for Approximately Diffeomorphic Medical Image Registration [16.388101540950295]
NePhiは変形を機能的に表現し、メモリ消費の設計空間において大きな柔軟性をもたらす。
我々は,NePhiが単一解像度の登録設定において,ボクセルに基づく表現の精度に一致することを示す。
マルチレゾリューション登録では,現在のSOTA学習ベース登録手法とインスタンス最適化の精度を一致させる。
論文 参考訳(メタデータ) (2023-09-13T21:21:50Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Medical Image Registration via Neural Fields [35.80302878742334]
NIR(Neural Image Registration)と呼ばれる新しいニューラルネットベースの画像登録フレームワークを提案する。
2つの3D MR脳スキャンデータセットの実験により、NIRは登録精度と正規性の両方の観点から最先端のパフォーマンスを得る一方で、従来の最適化ベースの手法よりもはるかに高速に動作していることが示された。
論文 参考訳(メタデータ) (2022-06-07T08:43:31Z) - Adversarial Parametric Pose Prior [106.12437086990853]
我々は、SMPLパラメータを現実的なポーズを生成する値に制限する事前学習を行う。
得られた先行学習は実データ分布の多様性をカバーし、2次元キーポイントからの3次元再構成の最適化を容易にし、画像からの回帰に使用する場合のポーズ推定精度を向上することを示す。
論文 参考訳(メタデータ) (2021-12-08T10:05:32Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
ニューラル常微分方程式(NODE)を利用した汎用的で高速かつ高精度な微分型画像登録フレームワークを提案する。
従来の最適化手法と比較して、我々のフレームワークは実行時間を数十分から数十秒に短縮する。
実験の結果, 提案手法の登録結果は, 各種測定値において, 最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2021-08-07T12:54:17Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Conditional Deformable Image Registration with Convolutional Neural
Network [15.83842747998493]
深部変形可能な画像登録のための条件付き画像登録手法と自己教師付き学習パラダイムを提案する。
提案手法は, 実行時の優位性や登録精度を犠牲にすることなく, 変形場の滑らかさを正確に制御することができる。
論文 参考訳(メタデータ) (2021-06-23T22:25:28Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。