論文の概要: Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2011.14302v2
- Date: Tue, 1 Dec 2020 06:25:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 09:03:47.077120
- Title: Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images
- Title(参考訳): 微細解像度リモートセンシング画像のセマンティックセグメンテーションのための多段階アテンションResU-Net
- Authors: Rui Li, Shunyi Zheng, Chenxi Duan, Jianlin Su, and Ce Zhang
- Abstract要約: この問題に対処するための線形注意機構(LAM)を提案する。
LAMは、計算効率の高いドット積アテンションとほぼ同値である。
微細なリモートセンシング画像からのセマンティックセグメンテーションのためのマルチステージアテンションResU-Netを設計する。
- 参考スコア(独自算出の注目度): 9.398340832493457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The attention mechanism can refine the extracted feature maps and boost the
classification performance of the deep network, which has become an essential
technique in computer vision and natural language processing. However, the
memory and computational costs of the dot-product attention mechanism increase
quadratically with the spatio-temporal size of the input. Such growth hinders
the usage of attention mechanisms considerably in application scenarios with
large-scale inputs. In this Letter, we propose a Linear Attention Mechanism
(LAM) to address this issue, which is approximately equivalent to dot-product
attention with computational efficiency. Such a design makes the incorporation
between attention mechanisms and deep networks much more flexible and
versatile. Based on the proposed LAM, we re-factor the skip connections in the
raw U-Net and design a Multi-stage Attention ResU-Net (MAResU-Net) for semantic
segmentation from fine-resolution remote sensing images. Experiments conducted
on the Vaihingen dataset demonstrated the effectiveness and efficiency of our
MAResU-Net. Open-source code is available at
https://github.com/lironui/Multistage-Attention-ResU-Net.
- Abstract(参考訳): 注目機構は抽出した特徴マップを洗練させ、深層ネットワークの分類性能を高めることができ、コンピュータビジョンや自然言語処理において重要な技術となっている。
しかし,dot-product attention機構のメモリと計算コストは入力の時空間サイズと2乗的に増加する。
このような成長は、大規模な入力を持つアプリケーションシナリオにおいて、注意機構の使用をかなり妨げます。
本稿では,この問題に対処するための線形注意機構(LAM)を提案する。
このような設計により、注意機構とディープネットワークの一体化はより柔軟で汎用性が高い。
提案する lam に基づいて,u-net のスキップ接続をリファクタリングし,マルチステージアテンション resu-net (maresu-net) を設計,精細なリモートセンシング画像から意味セグメンテーションを行う。
Vaihingenデータセットで行った実験では、MAResU-Netの有効性と効率が示された。
オープンソースコードはhttps://github.com/lironui/multistage-attention-resu-netで入手できる。
関連論文リスト
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
マルチスケールアテンションマップをマージするUNetベースのフレームワークであるAMMUNetを提案する。
提案するAMMMは,マルチスケールアテンションマップを固定マスクテンプレートを用いた統一表現に効果的に結合する。
提案手法は,Vayhingenデータセットでは75.48%,Potsdamデータセットでは77.90%という顕著な平均交叉(mIoU)を達成した。
論文 参考訳(メタデータ) (2024-04-20T15:23:15Z) - NiNformer: A Network in Network Transformer with Token Mixing as a Gating Function Generator [1.3812010983144802]
このアテンション機構はコンピュータビジョンでビジョントランスフォーマー ViT として使用された。
コストがかかり、効率的な最適化のためにかなりのサイズのデータセットを必要とするという欠点がある。
本稿では,新しい計算ブロックを標準ViTブロックの代替として導入し,計算負荷を削減する。
論文 参考訳(メタデータ) (2024-03-04T19:08:20Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
本稿では、簡単な構造で大幅な性能向上を実現するための効率的な局所注意法(ELA)を提案する。
これらの課題を克服するため、我々は1次元畳み込みとグループ正規化機能強化技術の導入を提案する。
ELAはResNet、MobileNet、DeepLabといったディープCNNネットワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-02T08:06:18Z) - TDAN: Top-Down Attention Networks for Enhanced Feature Selectivity in
CNNs [18.24779045808196]
本稿では,トップダウンチャネルと空間変調を行うために,視覚検索ライトを反復的に生成する軽量なトップダウンアテンションモジュールを提案する。
我々のモデルは、推論中の入力解像度の変化に対してより堅牢であり、個々のオブジェクトや特徴を明示的な監督なしに各計算ステップでローカライズすることで、注意を"シフト"することを学ぶ。
論文 参考訳(メタデータ) (2021-11-26T12:35:17Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Coordinate Attention for Efficient Mobile Network Design [96.40415345942186]
チャネルの注目に位置情報を埋め込むことにより,モバイルネットワークに対する新たな注意メカニズムを提案する。
2次元グローバルプーリングにより特徴テンソルを単一特徴ベクトルに変換するチャネルアテンションとは異なり、座標アテンションはチャネルアテンションを2つの1次元特徴符号化プロセスに分解する。
座標の注意はImageNetの分類に有用であり、オブジェクト検出やセマンティックセグメンテーションといった下流タスクではよりうまく振る舞う。
論文 参考訳(メタデータ) (2021-03-04T09:18:02Z) - AttendNets: Tiny Deep Image Recognition Neural Networks for the Edge via
Visual Attention Condensers [81.17461895644003]
我々は、オンデバイス画像認識に適した、低精度でコンパクトなディープニューラルネットワークであるAttendNetsを紹介する。
AttendNetsは、視覚的注意の凝縮に基づく深い自己注意アーキテクチャを持っている。
その結果、AttendNetsは、いくつかのディープニューラルネットワークと比較して、アーキテクチャと計算の複雑さが著しく低いことが示された。
論文 参考訳(メタデータ) (2020-09-30T01:53:17Z) - Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images [10.835342317692884]
リモートセンシング画像におけるセマンティックセグメンテーションの精度は、ディープ畳み込みニューラルネットワークによって著しく向上した。
本稿では,これらの問題に対処するマルチアテンション・ネットワーク(MANet)を提案する。
線形複雑性を伴うカーネル注意の新たなアテンション機構が提案され,注目される計算負荷の低減が図られた。
論文 参考訳(メタデータ) (2020-09-03T09:08:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。