論文の概要: AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.13408v1
- Date: Sat, 20 Apr 2024 15:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:10:11.619117
- Title: AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation
- Title(参考訳): AMMUNet:リモートセンシング画像セグメンテーションのためのマルチスケールアテンションマップマージ
- Authors: Yang Yang, Shunyi Zheng,
- Abstract要約: マルチスケールアテンションマップをマージするUNetベースのフレームワークであるAMMUNetを提案する。
提案するAMMMは,マルチスケールアテンションマップを固定マスクテンプレートを用いた統一表現に効果的に結合する。
提案手法は,Vayhingenデータセットでは75.48%,Potsdamデータセットでは77.90%という顕著な平均交叉(mIoU)を達成した。
- 参考スコア(独自算出の注目度): 4.618389486337933
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advancement of deep learning has driven notable progress in remote sensing semantic segmentation. Attention mechanisms, while enabling global modeling and utilizing contextual information, face challenges of high computational costs and require window-based operations that weaken capturing long-range dependencies, hindering their effectiveness for remote sensing image processing. In this letter, we propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging, comprising two key innovations: the granular multi-head self-attention (GMSA) module and the attention map merging mechanism (AMMM). GMSA efficiently acquires global information while substantially mitigating computational costs in contrast to global multi-head self-attention mechanism. This is accomplished through the strategic utilization of dimension correspondence to align granularity and the reduction of relative position bias parameters, thereby optimizing computational efficiency. The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template, enabling the modeling of global attention mechanism. Experimental evaluations highlight the superior performance of our approach, achieving remarkable mean intersection over union (mIoU) scores of 75.48\% on the challenging Vaihingen dataset and an exceptional 77.90\% on the Potsdam dataset, demonstrating the superiority of our method in precise remote sensing semantic segmentation. Codes are available at https://github.com/interpretty/AMMUNet.
- Abstract(参考訳): 深層学習の進歩は、リモートセンシングセマンティックセグメンテーションにおいて顕著な進歩をもたらした。
注意機構は、グローバルなモデリングと文脈情報の利用を可能にする一方で、高い計算コストの課題に直面し、長期依存の捕捉を弱めるウィンドウベースの操作を必要とし、リモートセンシング画像処理の有効性を阻害する。
本稿では,マルチスケールアテンションマップをマージするUNetベースのフレームワークであるAMMUNetを提案する。
GMSAは、グローバルなマルチヘッド自己保持機構とは対照的に、計算コストを大幅に削減しながら、グローバル情報を効率的に取得する。
これは、寸法対応の戦略的利用により、粒度を調整し、相対的な位置バイアスパラメータを減らし、計算効率を最適化する。
提案するAMMMは,マルチスケールアテンションマップを固定マスクテンプレートを用いた統一表現に効果的に組み合わせ,グローバルアテンション機構のモデリングを可能にする。
実験により,本手法の精度が向上し,挑戦的ベイヒンゲンデータセットでは75.48 %,ポツダムデータセットでは77.90 %の顕著な平均交叉(mIoU)が達成された。
コードはhttps://github.com/interpretty/AMMUNet.comで入手できる。
関連論文リスト
- Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
本稿では,長いキャプションから密接な視覚的実体を抽出する手法を提案する。
本研究では,意味代名詞の抽出に大規模なマルチモーダルモデル,エンティティレベルのセグメンテーションを生成するクラス-aセグメンテーションモデル,および各セグメンテーション名詞と対応するセグメンテーションマスクを関連付けるマルチモーダル特徴融合モジュールを利用する。
論文 参考訳(メタデータ) (2024-02-04T16:06:05Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
自己教師付き事前学習(SSP)は、ラベル付きデータなしで有意義な特徴表現を抽出できる機械学習の一般的な手法として登場した。
本研究は、コンピュータビジョンタスクにおける純粋な自己教師付き学習(SSL)技術の有効性を評価する。
論文 参考訳(メタデータ) (2023-08-22T13:55:57Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images [9.398340832493457]
この問題に対処するための線形注意機構(LAM)を提案する。
LAMは、計算効率の高いドット積アテンションとほぼ同値である。
微細なリモートセンシング画像からのセマンティックセグメンテーションのためのマルチステージアテンションResU-Netを設計する。
論文 参考訳(メタデータ) (2020-11-29T07:24:21Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。