論文の概要: Modelling Verbal Morphology in Nen
- arxiv url: http://arxiv.org/abs/2011.14489v2
- Date: Sun, 6 Dec 2020 23:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 07:50:50.137760
- Title: Modelling Verbal Morphology in Nen
- Title(参考訳): ニューロンにおける言語形態のモデル化
- Authors: Saliha Murado\u{g}lu, Nicholas Evans, Ekaterina Vylomova
- Abstract要約: 我々は現在最先端の機械学習モデルを用いて形態的回帰を行い、Nen言語形態をモデル化する。
実験結果から, 動詞型の異なる分布は, 精度の異なるデータ構成に敏感であることがわかった。
また、同期のケーススタディを通じて、トレーニングデータから推測できるパターンの種類についても示す。
- 参考スコア(独自算出の注目度): 4.6877729174041605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nen verbal morphology is remarkably complex; a transitive verb can take up to
1,740 unique forms. The combined effect of having a large combinatoric space
and a low-resource setting amplifies the need for NLP tools. Nen morphology
utilises distributed exponence - a non-trivial means of mapping form to
meaning. In this paper, we attempt to model Nen verbal morphology using
state-of-the-art machine learning models for morphological reinflection. We
explore and categorise the types of errors these systems generate. Our results
show sensitivity to training data composition; different distributions of verb
type yield different accuracies (patterning with E-complexity). We also
demonstrate the types of patterns that can be inferred from the training data
through the case study of syncretism.
- Abstract(参考訳): 半動詞の形態は著しく複雑であり、推移動詞は1,740個の固有形をとることができる。
大規模なコンビネータ空間と低リソース設定の併用効果は、NLPツールの必要性を増幅する。
Nen モルフォロジーは分散指数(distributed exponence)、つまり形式を意味にマッピングする非自明な手段を利用する。
本稿では,形態的回帰のための最先端機械学習モデルを用いて,Nen言語形態をモデル化する。
これらのシステムが生成するエラーの種類を調べ、分類する。
この結果から,動詞型の異なる分布は,異なる精度(E-complexityのパターン)をもたらすことがわかった。
また、同期のケーススタディを通じて、トレーニングデータから推測できるパターンの種類についても示す。
関連論文リスト
- Probabilistic Transformer: A Probabilistic Dependency Model for
Contextual Word Representation [52.270712965271656]
本稿では,文脈表現の新しいモデルを提案する。
モデルのグラフは変換器に似ており、依存関係と自己意識の対応性がある。
実験により,本モデルが小型・中型データセットのトランスフォーマーと競合することを示す。
論文 参考訳(メタデータ) (2023-11-26T06:56:02Z) - Morphological Inflection with Phonological Features [7.245355976804435]
本研究は,形態素モデルがサブキャラクタの音韻的特徴にアクセスできる様々な方法で得られる性能への影響について検討する。
我々は、浅いグラフ-音素マッピングを持つ言語に対する言語固有の文法を用いて、標準グラフデータから音素データを抽出する。
論文 参考訳(メタデータ) (2023-06-21T21:34:39Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Tackling Morphological Analogies Using Deep Learning -- Extended Version [8.288496996031684]
分析比例は "A is to B as C is to D" という形の言明である
本稿では,Deep Learningを用いて形態的類似を検知し,解決する手法を提案する。
複数の言語にまたがる類似検出と分解能において,本モデルの競合性能を実証する。
論文 参考訳(メタデータ) (2021-11-09T13:45:23Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Minimal Supervision for Morphological Inflection [8.532288965425805]
ラベル付きデータのブートストラップは,5つのラベル付きパラダイムに過ぎず,大量のラベル付きテキストが添付されています。
本手法は, 形態素系における2相配置の異なる規則性を利用する。
本研究では,8言語にまたがるParadigm Cell Filling Problemを試行し,比較的単純な形態を持つ言語では,その直交正則性によって優雅な精度が得られることを示した。
論文 参考訳(メタデータ) (2021-04-17T11:07:36Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - A Simple Joint Model for Improved Contextual Neural Lemmatization [60.802451210656805]
本稿では,20言語で最先端の成果を得られる,単純結合型ニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
論文 参考訳(メタデータ) (2019-04-04T02:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。