SAR Image Despeckling Based on Convolutional Denoising Autoencoder
- URL: http://arxiv.org/abs/2011.14627v1
- Date: Mon, 30 Nov 2020 09:02:25 GMT
- Title: SAR Image Despeckling Based on Convolutional Denoising Autoencoder
- Authors: Qianqian Zhang and Ruizhi Sun
- Abstract summary: In Synthetic Aperture Radar (SAR) imaging, despeckling is very important for image analysis.
In this paper, the limited scale of dataset make a efficient exploration by using convolutioal denoising autoencoder (C-DAE) to reconstruct the speckle-free SAR images.
- Score: 13.579420996461439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Synthetic Aperture Radar (SAR) imaging, despeckling is very important for
image analysis,whereas speckle is known as a kind of multiplicative noise
caused by the coherent imaging system. During the past three decades, various
algorithms have been proposed to denoise the SAR image. Generally, the BM3D is
considered as the state of art technique to despeckle the speckle noise with
excellent performance. More recently, deep learning make a success in image
denoising and achieved a improvement over conventional method where large train
dataset is required. Unlike most of the images SAR image despeckling approach,
the proposed approach learns the speckle from corrupted images directly. In
this paper, the limited scale of dataset make a efficient exploration by using
convolutioal denoising autoencoder (C-DAE) to reconstruct the speckle-free SAR
images. Batch normalization strategy is integrated with C- DAE to speed up the
train time. Moreover, we compute image quality in standard metrics, PSNR and
SSIM. It is revealed that our approach perform well than some others.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded aperture snapshot spectral imaging (CASSI) is a technique used to reconstruct three-dimensional hyperspectral images (HSIs)
This paper proposes a fast alternating minimization algorithm based on the sparsity and deep image priors (Fama-P) of natural images.
arXiv Detail & Related papers (2022-06-12T03:29:14Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
despeckling is a crucial preliminary step in scene analysis algorithms.
Recent success of deep learning envisions a new generation of despeckling techniques.
We propose a self-supervised Bayesian despeckling method.
arXiv Detail & Related papers (2020-07-04T11:38:48Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.