Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit
- URL: http://arxiv.org/abs/2011.14651v1
- Date: Mon, 30 Nov 2020 09:43:59 GMT
- Title: Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit
- Authors: Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing and Ying-Jer Kao
- Abstract summary: We introduce a hybrid model combining the quantum-inspired tensor networks (TN) and the variational quantum circuits (VQC) to perform supervised learning tasks.
We show that a matrix product state based TN with low bond dimensions performs better than PCA as a feature extractor to compress data for the input of VQCs in the binary classification of MNIST dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One key step in performing quantum machine learning (QML) on noisy
intermediate-scale quantum (NISQ) devices is the dimension reduction of the
input data prior to their encoding. Traditional principle component analysis
(PCA) and neural networks have been used to perform this task; however, the
classical and quantum layers are usually trained separately. A framework that
allows for a better integration of the two key components is thus highly
desirable. Here we introduce a hybrid model combining the quantum-inspired
tensor networks (TN) and the variational quantum circuits (VQC) to perform
supervised learning tasks, which allows for an end-to-end training. We show
that a matrix product state based TN with low bond dimensions performs better
than PCA as a feature extractor to compress data for the input of VQCs in the
binary classification of MNIST dataset. The architecture is highly adaptable
and can easily incorporate extra quantum resource when available.
Related papers
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Entangled Datasets for Quantum Machine Learning [0.0]
We argue that one should instead employ quantum datasets composed of quantum states.
We show how a quantum neural network can be trained to generate the states in the NTangled dataset.
We also consider an alternative entanglement-based dataset, which is scalable and is composed of states prepared by quantum circuits.
arXiv Detail & Related papers (2021-09-08T02:20:13Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - An end-to-end trainable hybrid classical-quantum classifier [0.0]
We introduce a hybrid model combining a quantum-inspired tensor network and a variational quantum circuit to perform supervised learning tasks.
This architecture allows for the classical and quantum parts of the model to be trained simultaneously, providing an end-to-end training framework.
arXiv Detail & Related papers (2021-02-04T05:19:54Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.