Branching Quantum Convolutional Neural Networks
- URL: http://arxiv.org/abs/2012.14439v1
- Date: Mon, 28 Dec 2020 19:00:03 GMT
- Title: Branching Quantum Convolutional Neural Networks
- Authors: Ian MacCormack, Conor Delaney, Alexey Galda, Nidhi Aggarwal, and
Prineha Narang
- Abstract summary: Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network-based algorithms have garnered considerable attention in
condensed matter physics for their ability to learn complex patterns from very
high dimensional data sets towards classifying complex long-range patterns of
entanglement and correlations in many-body quantum systems. Small-scale quantum
computers are already showing potential gains in learning tasks on large
quantum and very large classical data sets. A particularly interesting class of
algorithms, the quantum convolutional neural networks (QCNN) could learn
features of a quantum data set by performing a binary classification task on a
nontrivial phase of quantum matter. Inspired by this promise, we present a
generalization of QCNN, the branching quantum convolutional neural network, or
bQCNN, with substantially higher expressibility. A key feature of bQCNN is that
it leverages mid-circuit (intermediate) measurement results, realizable on
current trapped-ion systems, obtained in pooling layers to determine which sets
of parameters will be used in the subsequent convolutional layers of the
circuit. This results in a branching structure, which allows for a greater
number of trainable variational parameters in a given circuit depth. This is of
particular use on current-day NISQ devices, where circuit depth is limited by
gate noise. We present an overview of the ansatz structure and scaling, and
provide evidence of its enhanced expressibility compared to QCNN. Using
artificially-constructed large data sets of training states as a
proof-of-concept we demonstrate the existence of training tasks in which bQCNN
far outperforms an ordinary QCNN. Finally, we present future directions where
the classical branching structure and increased density of trainable parameters
in bQCNN would be particularly valuable.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities.
In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework.
We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time.
arXiv Detail & Related papers (2024-02-16T11:44:25Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
We propose a new kind of quantum recurrent neural network (QRNN) to find quantum advantageous applications in the near term.
Our QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm's requirement with regard to the coherent time of quantum devices.
The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning.
arXiv Detail & Related papers (2023-02-07T04:04:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
We improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity.
We draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data.
The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2021-10-31T03:10:48Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.