論文の概要: Feature Space Singularity for Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2011.14654v2
- Date: Wed, 16 Dec 2020 19:56:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 15:00:31.132557
- Title: Feature Space Singularity for Out-of-Distribution Detection
- Title(参考訳): 分布外検出のための特徴空間特異性
- Authors: Haiwen Huang, Zhihan Li, Lulu Wang, Sishuo Chen, Bin Dong, Xinyu Zhou
- Abstract要約: OoD(Out-of-Distribution)検出は、安全な人工知能システムを構築する上で重要である。
本稿では,新しい観測結果に基づく簡易かつ効果的なアルゴリズムを提案する。
提案アルゴリズムは,OoD検出ベンチマークにおける最先端性能を実現する。
- 参考スコア(独自算出の注目度): 12.889477280195079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-Distribution (OoD) detection is important for building safe artificial
intelligence systems. However, current OoD detection methods still cannot meet
the performance requirements for practical deployment. In this paper, we
propose a simple yet effective algorithm based on a novel observation: in a
trained neural network, OoD samples with bounded norms well concentrate in the
feature space. We call the center of OoD features the Feature Space Singularity
(FSS), and denote the distance of a sample feature to FSS as FSSD. Then, OoD
samples can be identified by taking a threshold on the FSSD. Our analysis of
the phenomenon reveals why our algorithm works. We demonstrate that our
algorithm achieves state-of-the-art performance on various OoD detection
benchmarks. Besides, FSSD also enjoys robustness to slight corruption in test
data and can be further enhanced by ensembling. These make FSSD a promising
algorithm to be employed in real world. We release our code at
\url{https://github.com/megvii-research/FSSD_OoD_Detection}.
- Abstract(参考訳): OoD(Out-of-Distribution)検出は、安全な人工知能システムを構築する上で重要である。
しかし、現在のOoD検出方法は、実際のデプロイメントのパフォーマンス要件を満たすことはできない。
本稿では,新しい観測に基づく単純かつ効果的なアルゴリズムを提案する。訓練されたニューラルネットワークでは,境界ノルムを持つoodサンプルが特徴空間によく集中する。
We called the center of OoD features the Feature Space Singularity (FSS) and indicate the distance of a sample feature to FSS as FSSD。
次に、OoDサンプルをFSSDのしきい値を取ることで識別することができる。
この現象を解析した結果、アルゴリズムが機能する理由が明らかになった。
提案アルゴリズムは,OoD検出ベンチマークにおける最先端性能を実現する。
さらに、FSSDはテストデータのわずかな破損に対する堅牢性も享受し、アンサンブルによってさらに強化される。
これにより、FSSDは実世界で採用される有望なアルゴリズムとなる。
コードは \url{https://github.com/megvii-research/fsd_ood_detection} でリリースします。
関連論文リスト
- On the Robustness of Fully-Spiking Neural Networks in Open-World Scenarios using Forward-Only Learning Algorithms [6.7236795813629]
我々はフォワードフォワードアルゴリズム(FFA)を用いたOoD(Out-of-Distribution)検出のための新しいアルゴリズムを開発した。
提案手法は, 標本の潜在表現からクラス表現多様体への距離を用いて, 分布内(ID)データに属するサンプルの確率を測定する。
また,任意のクラスの分布から遠ざかるサンプルの特徴を強調表示するグラデーションフリー属性手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T08:08:17Z) - SFOD: Spiking Fusion Object Detector [10.888008544975662]
Spiking Fusion Object Detector (SFOD)は、SNNベースのオブジェクト検出のためのシンプルで効率的なアプローチである。
我々は、イベントカメラに適用されたSNNにおいて、異なるスケールのフィーチャーマップを初めて融合させる、スパイキングフュージョンモジュールを設計する。
我々は、NCARデータセット上で93.7%の精度を達成し、SNNに基づいて最先端の分類結果を確立する。
論文 参考訳(メタデータ) (2024-03-22T13:24:50Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - Exploring Hyperspectral Anomaly Detection with Human Vision: A Small
Target Aware Detector [20.845503528474328]
ハイパースペクトル異常検出(HAD)は、背景と異なるスペクトル特徴を持つ画素点の局在化を目的としている。
既存のHAD法は、背景スペクトルと異常スペクトルを客観的に検出し、識別することを目的としている。
本稿では,人間の視覚知覚下でのハイパースペクトル画像(HSI)の特徴を解析する。
本研究では,人間の視覚的知覚に近づいたHSI特徴を捉えるために,サリエンシマップを導入した小型目標認識検出器(STAD)を提案する。
論文 参考訳(メタデータ) (2024-01-02T08:28:38Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
汎用SALOD(General SALient Object Detection)ベンチマークを構築し,複数のSOD手法の総合的な比較を行った。
以上の実験では、既存の損失関数は、通常いくつかの指標に特化しているが、他の指標には劣る結果が報告されている。
我々は,深層ネットワークに画素レベルと画像レベルの両方の監視信号を統合することにより,より識別的な特徴を学習するためのエッジ・アウェア・ロス(EA)を提案する。
論文 参考訳(メタデータ) (2022-02-07T03:43:16Z) - Class-wise Thresholding for Detecting Out-of-Distribution Data [6.5295089440496055]
我々は,深層ニューラルネットワークを用いたOoD(Out-of-Distribution)入力データ検出の問題を考える。
既存のほとんどのOoD検出アルゴリズムに適用可能なクラスワイドしきい値決定方式を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:54:48Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Entropy Maximization and Meta Classification for Out-Of-Distribution
Detection in Semantic Segmentation [7.305019142196585]
自動運転など多くのアプリケーションにおいて,OoD(Out-of-Distribution)サンプルが不可欠である。
OoD検出の自然なベースラインアプローチは、ピクセル回りのソフトマックスエントロピーのしきい値です。
そのアプローチを大幅に改善する2段階の手順を提案する。
論文 参考訳(メタデータ) (2020-12-09T11:01:06Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
我々は,OoD検出性能を改善しつつ,ニューラルネットワークをOoDデータのチューニングから解放する2つの方法を提案する。
具体的には、信頼性スコアリングと修正された入力前処理法を分離することを提案する。
大規模画像データセットのさらなる解析により、セマンティックシフトと非セマンティックシフトの2種類の分布シフトが有意な差を示すことが示された。
論文 参考訳(メタデータ) (2020-02-26T04:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。