論文の概要: Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
- arxiv url: http://arxiv.org/abs/2506.12766v1
- Date: Sun, 15 Jun 2025 08:19:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.810032
- Title: Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
- Title(参考訳): 深度をタイムラプスで探すと、赤外線小ターゲット検出器がずっと良くなる
- Authors: Ruojing Li, Wei An, Xinyi Ying, Yingqian Wang, Yimian Dai, Longguang Wang, Miao Li, Yulan Guo, Li Liu,
- Abstract要約: 赤外線小目標(IRST)検出は、精度、普遍性、堅牢性、効率的な性能を同時に達成する上で困難である。
現在の学習に基づく手法は、空間的領域と短期的領域の両方から"より多くの情報を活用する。
本稿では、IRST検出のための時間次元でのみ計算を行う効率的な深部プローブネットワーク(DeepPro)を提案する。
- 参考スコア(独自算出の注目度): 63.567886330598945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Infrared small target (IRST) detection is challenging in simultaneously achieving precise, universal, robust and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
- Abstract(参考訳): 赤外線小目標検出(IRST)は、極めて薄めのターゲットと強い干渉により、正確で普遍的で堅牢で効率的な性能を同時に達成することが困難である。
従来の学習手法では,空間的・短期的な時間的領域の「より」情報を活用しようとするが,複雑な条件下での信頼性の低下に悩まされる。この記事では,より重要な領域からの「より不可欠な」情報を探索する。
理論的解析により,時間的プロファイルにおける大域的時間的塩分率と相関情報が,他の信号との区別において有意な優位性を示すことが明らかとなった。
このような優位性をよく訓練されたネットワークで優先的に活用するかどうかを調べるため、この分野で最初の予測属性ツールを構築し、時間プロファイル情報の重要性を検証した。
以上の結論から、IRST検出タスクを1次元信号異常検出タスクとして再設計し、IRST検出の時間次元でのみ計算を行う効率的な深部探触ネットワーク(DeepPro)を提案する。
提案手法の有効性を十分に検証するための広範囲な実験を行った。
DeepProは、非常に高い効率で広く使われているベンチマークにおいて、既存の最先端IRST検出方法よりも優れており、ディムターゲットや複雑なシナリオにおいて大幅に改善されています。
我々は、IRST検出の開発を促進する新しいモデリングドメイン、新しい洞察、新しい方法、新しいパフォーマンスを提供する。
コードはhttps://github.com/TinaLRJ/DeepProで入手できる。
関連論文リスト
- YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO [0.18641315013048293]
本稿では,画像超解像技術とマルチスケール観測を組み合わせた深層学習赤外線小目標検出手法を提案する。
この手法の2つの公開データセットであるSIRSTとIRISでのmAP@0.5検出率は、それぞれ96.4%と99.5%に達した。
論文 参考訳(メタデータ) (2024-12-27T18:43:56Z) - Paying more attention to local contrast: improving infrared small target detection performance via prior knowledge [11.865797842063884]
本稿では,局所コントラスト注意向上型赤外小型目標検出ネットワーク(LCAE-Net)を提案する。
パラメータカウントと浮動小数点演算(FLOP)はそれぞれ1.945Mと4.862Gであり、エッジデバイスへの展開に適している。
論文 参考訳(メタデータ) (2024-11-20T12:21:30Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
ディープフェイク検出は、オンラインコンテンツへの信頼を損なうディープフェイクメディアの拡散と対比することを目的としている。
本稿では,BNN(Binary Neural Networks)を用いた画像に対する新しいディープフェイク検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T13:37:36Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。