論文の概要: Unsupervised Path Regression Networks
- arxiv url: http://arxiv.org/abs/2011.14787v2
- Date: Tue, 9 Mar 2021 11:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:54:16.825506
- Title: Unsupervised Path Regression Networks
- Title(参考訳): 教師なし経路回帰ネットワーク
- Authors: Michal P\'andy, Daniel Lenton, Ronald Clark
- Abstract要約: 我々は、教師なしの方法で訓練されたニューラルネットワークからの直接スプライン回帰によって、最も短い経路問題を解くことができることを示した。
最小値が衝突のない解を保証するような幾何依存の最適コスト関数を導出する。
- 参考スコア(独自算出の注目度): 14.895252584104679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that challenging shortest path problems can be solved via
direct spline regression from a neural network, trained in an unsupervised
manner (i.e. without requiring ground truth optimal paths for training). To
achieve this, we derive a geometry-dependent optimal cost function whose minima
guarantees collision-free solutions. Our method beats state-of-the-art
supervised learning baselines for shortest path planning, with a much more
scalable training pipeline, and a significant speedup in inference time.
- Abstract(参考訳): 最短経路問題は、教師なしの方法で訓練されたニューラルネットワークからのスプライン回帰によって解決できることを実証する。
訓練に真実の最適経路を 必要とせずに)
これを実現するために、最小値が衝突のない解を保証する幾何依存の最適コスト関数を導出する。
提案手法は,最短経路計画のための教師付き学習ベースライン,よりスケーラブルなトレーニングパイプライン,推論時間の大幅な高速化を実現した。
関連論文リスト
- An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Vertex-based Networks to Accelerate Path Planning Algorithms [3.684936338492373]
本稿では,RT* のサンプリングプロセスを強化するため,頂点に基づくネットワークの利用を提案し,より効率的な経路計画手法を提案する。
我々は、関連するデータ不均衡問題に対処するために焦点損失を採用し、異なるマスキング構成を探索し、システム性能の実用的なトレードオフを決定する。
論文 参考訳(メタデータ) (2023-07-13T20:56:46Z) - Learning Coverage Paths in Unknown Environments with Deep Reinforcement Learning [17.69984142788365]
被覆経路計画 (CPP) は、制限された領域の自由空間全体をカバーする経路を見つける問題である。
この課題に対する強化学習の適性について検討する。
本稿では,フロンティアに基づく計算可能なエゴセントリックマップ表現と,全変動に基づく新たな報酬項を提案する。
論文 参考訳(メタデータ) (2023-06-29T14:32:06Z) - Unsupervised Training for Neural TSP Solver [2.9398911304923447]
本稿では,トラベリングセールスマン問題を解決するための教師なし学習手法を提案する。
我々は、TSPの整数線型プログラムを緩和して、正しいインスタンスラベルを必要としない損失関数を構築する。
私たちのアプローチは、強化学習よりも安定しており、トレーニングも簡単です。
論文 参考訳(メタデータ) (2022-07-27T17:33:29Z) - Offline Stochastic Shortest Path: Learning, Evaluation and Towards
Optimality [57.91411772725183]
本稿では,状態空間と動作空間が有限である場合のオフライン最短経路問題について考察する。
オフラインポリシ評価(OPE)とオフラインポリシ学習タスクの両方を扱うための,シンプルな値ベースアルゴリズムを設計する。
これらの単純なアルゴリズムの解析は、極小値に近い最悪のケース境界を示唆する強いインスタンス依存境界をもたらす。
論文 参考訳(メタデータ) (2022-06-10T07:44:56Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
オフライン学習を必要とせず、簡単な効果的なオンライン学習手法を提案する。
これは、モデルが以前見たオブジェクトに関する知識を記憶するための、内蔵されたメモリ保持メカニズムを可能にする。
我々は、RT-MDNetにおける多層パーセプトロンと、DiMPにおける畳み込みニューラルネットワークの追跡のためのオンライン学習ファミリーにおける2つのネットワークに基づくアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-28T06:51:18Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - Photon-Driven Neural Path Guiding [102.12596782286607]
本稿では,スパース標本群から誘導される経路の高品質なサンプリング分布を再構築するニューラルパス誘導手法を提案する。
我々は、光源から追跡した光子をサンプリング密度再構成の入力として利用し、強力なグローバル照明の挑戦シーンに非常に効果的である。
提案手法は,従来の最先端の経路案内手法よりも,テストシーンのレンダリング結果が大幅に向上する。
論文 参考訳(メタデータ) (2020-10-05T04:54:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。