論文の概要: Autonomous Drone Racing with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2103.08624v1
- Date: Mon, 15 Mar 2021 18:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 13:24:01.544410
- Title: Autonomous Drone Racing with Deep Reinforcement Learning
- Title(参考訳): 深部強化学習による自律型ドローンレース
- Authors: Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza
- Abstract要約: ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
- 参考スコア(独自算出の注目度): 39.757652701917166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many robotic tasks, such as drone racing, the goal is to travel through a
set of waypoints as fast as possible. A key challenge for this task is planning
the minimum-time trajectory, which is typically solved by assuming perfect
knowledge of the waypoints to pass in advance. The resulting solutions are
either highly specialized for a single-track layout, or suboptimal due to
simplifying assumptions about the platform dynamics. In this work, a new
approach to minimum-time trajectory generation for quadrotors is presented.
Leveraging deep reinforcement learning and relative gate observations, this
approach can adaptively compute near-time-optimal trajectories for random track
layouts. Our method exhibits a significant computational advantage over
approaches based on trajectory optimization for non-trivial track
configurations. The proposed approach is evaluated on a set of race tracks in
simulation and the real world, achieving speeds of up to 17 m/s with a physical
quadrotor.
- Abstract(参考訳): ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
この課題の鍵となる課題は、通常、経路ポイントの完全な知識を事前に通過させることによって解決される最小時間軌道を計画することである。
結果として得られるソリューションは、シングルトラックのレイアウトに高度に特化するか、プラットフォームダイナミクスに関する仮定を単純化するため、副最適である。
本研究では,四元数に対する最小時間軌道生成に対する新しいアプローチを提案する。
深部強化学習と相対ゲート観測の活用により、ランダムなトラックレイアウトのための近時最適軌道を適応的に計算できる。
本手法は,非自明なトラック構成に対する軌道最適化に基づくアプローチよりも大きな計算上の優位性を示す。
提案手法は,シミュレーションと実世界におけるレーストラックのセットで評価され,最大17m/sの速さを物理クオータで達成する。
関連論文リスト
- Revisiting Space Mission Planning: A Reinforcement Learning-Guided Approach for Multi-Debris Rendezvous [15.699822139827916]
目的は、与えられたすべての破片を訪問して、ミッション全体のランデブーを最小限に抑えるシーケンスを最適化することである。
ニューラルネットワーク(NN)ポリシーが開発され、さまざまなデブリフィールドを持つシミュレーションされた宇宙ミッションで訓練される。
強化学習アプローチは計画効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-09-25T12:50:01Z) - Hybrid Imitation-Learning Motion Planner for Urban Driving [0.0]
本稿では,学習ベースと最適化ベースを融合した新しいハイブリッドモーションプランナを提案する。
我々のモデルは、これらの目的に固有のトレードオフを緩和し、安全性と人間の類似性を効果的にバランスさせます。
シミュレーション実験により本手法を検証し,現実の自動運転車に導入することで,その有効性を更に実証する。
論文 参考訳(メタデータ) (2024-09-04T16:54:31Z) - Evaluation of Local Planner-Based Stanley Control in Autonomous RC Car Racing Series [0.0]
本稿では,自動RCカーレースの制御手法を提案する。
実際のLiDARポイントクラウド上では、ローカルパスのみを計画している。
1/10サイズのRCカーでテストし、ベースソリューションから実際のF110thレースにおける最適設定までのチューニング手順を示す。
論文 参考訳(メタデータ) (2024-08-27T15:50:31Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Learning-Initialized Trajectory Planning in Unknown Environments [4.2960463890487555]
未知の環境での自律飛行の計画には、空間軌道と時間軌道の両方を正確に計画する必要がある。
本稿ではニューラルdトラジェクトリ・プランナーを用いて最適化を導く新しい手法を提案する。
遅延計画に対する耐性を持って、堅牢なオンラインリプランニングをサポートするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-19T15:07:26Z) - Efficient Ground Vehicle Path Following in Game AI [77.34726150561087]
本稿では,ゲームAIに適した地上車両の効率的な追従経路を提案する。
提案したパスフォロワは,一対一シューティングゲームにおいて,様々なテストシナリオを通じて評価される。
その結果,既存の経路と比較すると,立ち往生するイベントの総数が70%減少した。
論文 参考訳(メタデータ) (2023-07-07T04:20:07Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
本稿では,エスケープネットワークを用いた微分動的プログラミング(DDPEN)を提案する。
本稿では,環境の入力マップとして,所望の位置とともにコストマップの形で利用する深層モデルを提案する。
このモデルは、目標に導く可能性のある将来の方向を生成し、リアルタイムに実行可能なローカルなミニマを避ける。
論文 参考訳(メタデータ) (2023-01-18T11:02:06Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
論文 参考訳(メタデータ) (2020-03-27T04:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。