論文の概要: Cost Function Unrolling in Unsupervised Optical Flow
- arxiv url: http://arxiv.org/abs/2011.14814v3
- Date: Sun, 26 May 2024 20:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 13:05:39.519656
- Title: Cost Function Unrolling in Unsupervised Optical Flow
- Title(参考訳): 教師なし光流におけるコスト関数の展開
- Authors: Gal Lifshitz, Dan Raviv,
- Abstract要約: この研究は、教師なしコスト関数でよく使われるトータル変分半ノルムの導出に焦点を当てている。
我々は、コストアンロールと呼ばれる新しい反復スキームにおいて、ハードL1スムーズネス制約に対する微分可能なプロキシを導出する。
- 参考スコア(独自算出の注目度): 6.656273171776146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Steepest descent algorithms, which are commonly used in deep learning, use the gradient as the descent direction, either as-is or after a direction shift using preconditioning. In many scenarios calculating the gradient is numerically hard due to complex or non-differentiable cost functions, specifically next to singular points. In this work we focus on the derivation of the Total Variation semi-norm commonly used in unsupervised cost functions. Specifically, we derive a differentiable proxy to the hard L1 smoothness constraint in a novel iterative scheme which we refer to as Cost Unrolling. Producing more accurate gradients during training, our method enables finer predictions of a given DNN model through improved convergence, without modifying its architecture or increasing computational complexity. We demonstrate our method in the unsupervised optical flow task. Replacing the L1 smoothness constraint with our unrolled cost during the training of a well known baseline, we report improved results on both MPI Sintel and KITTI 2015 unsupervised optical flow benchmarks. Particularly, we report EPE reduced by up to 15.82% on occluded pixels, where the smoothness constraint is dominant, enabling the detection of much sharper motion edges.
- Abstract(参考訳): ディープラーニングで一般的に使用されるステプスト降下アルゴリズムは、勾配をアシスまたはプレコンディショニングを用いた方向シフトの後に、降下方向として使用する。
多くのシナリオにおいて、勾配を計算することは、特に特異点の隣の複素あるいは微分不可能なコスト関数のために数値的に困難である。
本研究では、教師なしコスト関数でよく使われるトータル変分半ノルムの導出に焦点を当てる。
具体的には、コストアンロールと呼ばれる新しい反復スキームにおいて、ハードL1スムーズネス制約に対する微分可能なプロキシを導出する。
トレーニング中により正確な勾配を導出することにより、アーキテクチャを変更したり計算複雑性を増大させたりすることなく、収束を改善することで、与えられたDNNモデルのより詳細な予測が可能になる。
教師なし光学フロータスクにおいて,本手法を実証する。
MPI Sintel と KITTI 2015 の無監督光フローベンチマークの結果を報告する。
特に, よりシャープな動きエッジの検出が可能となる閉塞画素では, EPEが最大15.82%削減されたことを報告した。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Directional Smoothness and Gradient Methods: Convergence and Adaptivity [16.779513676120096]
我々は、最適化の経路に沿った目的の条件付けに依存する勾配降下に対する新しい準最適境界を開発する。
我々の証明の鍵となるのは方向の滑らかさであり、これは、目的の上のバウンドを開発するために使用する勾配変動の尺度である。
我々は,方向の滑らかさの知識を使わずとも,ポリアクのステップサイズと正規化GDが高速で経路依存の速度を得ることを示した。
論文 参考訳(メタデータ) (2024-03-06T22:24:05Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
直交線形ネットワークの勾配流による暗黙の正規化について, 鋭い結果を示す。
これを近似の一般化硬度における相転移現象と関連付ける。
結果の非シャープ性は、基礎追従最適化問題に対して、GHA現象が起こらないことを意味する。
論文 参考訳(メタデータ) (2023-07-13T13:27:51Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
本稿では,畳み込みニューラルネットワークの最適化手法を提案する。
出力チャネル方向に沿って勾配を定義することで性能が向上し,他の方向が有害となることを示す。
論文 参考訳(メタデータ) (2020-08-25T00:44:09Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。