論文の概要: A Comparison of Statistical and Machine Learning Algorithms for
Predicting Rents in the San Francisco Bay Area
- arxiv url: http://arxiv.org/abs/2011.14924v1
- Date: Thu, 26 Nov 2020 08:50:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 12:33:24.983149
- Title: A Comparison of Statistical and Machine Learning Algorithms for
Predicting Rents in the San Francisco Bay Area
- Title(参考訳): サンフランシスコ湾地域における家賃予測のための統計的・機械学習アルゴリズムの比較
- Authors: Paul Waddell and Arezoo Besharati-Zadeh
- Abstract要約: 本稿では,予測精度を重要視するユースケースについて述べるとともに,ランダムな森林回帰を複数の回帰と比較する。
我々は、ほぼ局所的なアクセシビリティ変数を用いて、両方のモデルから有用な予測を得られることを発見した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban transportation and land use models have used theory and statistical
modeling methods to develop model systems that are useful in planning
applications. Machine learning methods have been considered too 'black box',
lacking interpretability, and their use has been limited within the land use
and transportation modeling literature. We present a use case in which
predictive accuracy is of primary importance, and compare the use of random
forest regression to multiple regression using ordinary least squares, to
predict rents per square foot in the San Francisco Bay Area using a large
volume of rental listings scraped from the Craigslist website. We find that we
are able to obtain useful predictions from both models using almost exclusively
local accessibility variables, though the predictive accuracy of the random
forest model is substantially higher.
- Abstract(参考訳): 都市交通と土地利用モデルは、計画アプリケーションに有用なモデルシステムの開発に理論と統計的モデリング手法を用いてきた。
機械学習手法は「ブラックボックス」が多すぎると考えられており、解釈性に欠けており、土地利用や交通モデリングの文献に限られている。
そこで本研究では,予測精度を第一に重要視するユースケースを提示し,ランダムな森林回帰と,通常の最小二乗法を用いた複数回帰法を比較し,craigslist webサイトから収集した大量のレンタルリストを用いて,サンフランシスコベイエリアの平方フィート当たりの賃貸料を予測した。
その結果,ランダムフォレストモデルの予測精度は著しく高いものの,ほぼ排他的アクセシビリティ変数を用いて,両モデルから有用な予測が得られることがわかった。
関連論文リスト
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python [0.0]
重みを推定し、複数の(ベイジアン)モデルの予測分布をブレンドするために、BayesBlend Pythonパッケージを導入する。
ベイズブレンドは、モデルウェイトを推定するために擬ベイズモデルの平均化、積み重ね、一意的に階層的ベイズ積み重ねを実装している。
ベイズブレンドの保険損失モデリングの例を例に紹介する。
論文 参考訳(メタデータ) (2024-04-30T19:15:33Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - A step towards the integration of machine learning and small area
estimation [0.0]
本稿では,機械学習アルゴリズムがサポートする予測器を提案する。
仮定モデルからわずかに逸脱しただけで、この場合も提案が良い代替手段であることを示す。
さらに,機械学習予測器の精度推定手法を提案し,従来の手法との比較を行った。
論文 参考訳(メタデータ) (2024-02-12T09:43:17Z) - Improving Heterogeneous Model Reuse by Density Estimation [105.97036205113258]
本稿では,異なる参加者の個人データを用いてモデルを学習することを目的とした多人数学習について検討する。
モデルの再利用は、各パーティーのためにローカルモデルがトレーニングされていると仮定して、マルチパーティの学習にとって有望なソリューションである。
論文 参考訳(メタデータ) (2023-05-23T09:46:54Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Heterogeneous Ensemble Learning for Enhanced Crash Forecasts -- A
Frequentest and Machine Learning based Stacking Framework [0.803552105641624]
本研究では,都市および郊外の5車線未分割セグメント(5T)の衝突頻度をモデル化するために,重要なHEM手法の1つ,スタックリングを適用した。
Stackingの予測性能は、パラメトリック統計モデル(Poissonと負二項法)と機械学習技術の3つの状態(決定木、ランダム森林、勾配上昇)と比較される。
論文 参考訳(メタデータ) (2022-07-21T19:15:53Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。