Variance based sensitivity analysis for Monte Carlo and importance
sampling reliability assessment with Gaussian processes
- URL: http://arxiv.org/abs/2011.15001v1
- Date: Mon, 30 Nov 2020 17:06:28 GMT
- Title: Variance based sensitivity analysis for Monte Carlo and importance
sampling reliability assessment with Gaussian processes
- Authors: Morgane Menz, Sylvain Dubreuil, J\'er\^ome Morio, Christian Gogu,
Nathalie Bartoli and Marie Chiron
- Abstract summary: We propose a methodology to quantify the sensitivity of the probability of failure estimator to two uncertainty sources.
This analysis also enables to control the whole error associated to the failure probability estimate and thus provides an accuracy criterion on the estimation.
The approach is proposed for both a Monte Carlo based method as well as an importance sampling based method, seeking to improve the estimation of rare event probabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Running a reliability analysis on engineering problems involving complex
numerical models can be computationally very expensive, requiring advanced
simulation methods to reduce the overall numerical cost. Gaussian process based
active learning methods for reliability analysis have emerged as a promising
way for reducing this computational cost. The learning phase of these methods
consists in building a Gaussian process surrogate model of the performance
function and using the uncertainty structure of the Gaussian process to enrich
iteratively this surrogate model. For that purpose a learning criterion has to
be defined. Then, the estimation of the probability of failure is typically
obtained by a classification of a population evaluated on the final surrogate
model. Hence, the estimator of the probability of failure holds two different
uncertainty sources related to the surrogate model approximation and to the
sampling based integration technique. In this paper, we propose a methodology
to quantify the sensitivity of the probability of failure estimator to both
uncertainty sources. This analysis also enables to control the whole error
associated to the failure probability estimate and thus provides an accuracy
criterion on the estimation. Thus, an active learning approach integrating this
analysis to reduce the main source of error and stopping when the global
variability is sufficiently low is introduced. The approach is proposed for
both a Monte Carlo based method as well as an importance sampling based method,
seeking to improve the estimation of rare event probabilities. Performance of
the proposed strategy is then assessed on several examples.
Related papers
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework in Large Language Models (LLMs)
We derive novel metrics with high-probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Reliability analysis of discrete-state performance functions via
adaptive sequential sampling with detection of failure surfaces [0.0]
The paper presents a new efficient and robust method for rare event probability estimation.
The method can estimate the probabilities of multiple failure types.
It can accommodate this information to increase the accuracy of the estimated probabilities.
arXiv Detail & Related papers (2022-08-04T05:59:25Z) - Rare event estimation using stochastic spectral embedding [0.0]
Estimating the probability of rare failure events is an essential step in the reliability assessment of engineering systems.
We propose a set of modifications that tailor the algorithm to efficiently solve rare event estimation problems.
arXiv Detail & Related papers (2021-06-09T16:10:33Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.