論文の概要: TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
- arxiv url: http://arxiv.org/abs/2012.00073v1
- Date: Mon, 30 Nov 2020 19:48:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 19:34:24.934040
- Title: TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
- Title(参考訳): TimeSHAP: シーケンス摂動によるリカレントモデルの説明
- Authors: Jo\~ao Bento, Pedro Saleiro, Andr\'e F. Cruz, M\'ario A.T. Figueiredo,
Pedro Bizarro
- Abstract要約: リカレントニューラルネットワークは、多くの機械学習ドメインで標準的なビルディングブロックである。
これらのモデルにおける複雑な意思決定はブラックボックスと見なされ、正確性と解釈可能性の間の緊張を生み出す。
本研究では,モデルに依存しないリカレント説明器であるTimeSHAPを提示することにより,これらのギャップを埋めることに寄与する。
- 参考スコア(独自算出の注目度): 3.1498833540989413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks are a standard building block in numerous machine
learning domains, from natural language processing to time-series
classification. While their application has grown ubiquitous, understanding of
their inner workings is still lacking. In practice, the complex decision-making
in these models is seen as a black-box, creating a tension between accuracy and
interpretability. Moreover, the ability to understand the reasoning process of
a model is important in order to debug it and, even more so, to build trust in
its decisions. Although considerable research effort has been guided towards
explaining black-box models in recent years, recurrent models have received
relatively little attention. Any method that aims to explain decisions from a
sequence of instances should assess, not only feature importance, but also
event importance, an ability that is missing from state-of-the-art explainers.
In this work, we contribute to filling these gaps by presenting TimeSHAP, a
model-agnostic recurrent explainer that leverages KernelSHAP's sound
theoretical footing and strong empirical results. As the input sequence may be
arbitrarily long, we further propose a pruning method that is shown to
dramatically improve its efficiency in practice.
- Abstract(参考訳): リカレントニューラルネットワークは、自然言語処理から時系列分類に至るまで、多くの機械学習領域で標準的な構築ブロックである。
彼らのアプリケーションはユビキタスに成長してきたが、内部動作の理解はいまだに不足している。
実際には、これらのモデルの複雑な決定はブラックボックスと見なされ、正確性と解釈可能性の間の緊張を生み出す。
さらに、モデルの推論プロセスを理解する能力は、それをデバッグし、それ以上に、その決定に対する信頼を構築するために重要である。
近年、ブラックボックスモデルの説明にかなりの研究努力が注がれているが、リカレントモデルはあまり注目されていない。
一連のインスタンスからの決定を説明することを目的としたメソッドは、機能の重要性だけでなく、イベントの重要性も評価すべきである。
本研究では,KernelSHAPの音響的足場と強い経験的結果を活用するモデルに依存しない再帰的説明器であるTimeSHAPを提示することにより,これらのギャップを埋めることに貢献した。
入力シーケンスが任意に長い場合がありうるので、我々はさらに、実際の効率を劇的に向上させるプルーニング法を提案する。
関連論文リスト
- Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
線形モデルとツリーモデルの両方がニューラルネットワークよりも厳密に解釈可能であることを示す。
ユーザが好みに基づいて説明をパーソナライズすることのできる、嗜好に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T11:38:58Z) - On the Consistency and Robustness of Saliency Explanations for Time
Series Classification [4.062872727927056]
時系列ウィンドウを画像として解釈するために、サリエンシマップが適用されている。
本稿では,時系列の特徴と時間的属性に対するサリエンシマップの一貫性とロバスト性について広く分析する。
論文 参考訳(メタデータ) (2023-09-04T09:08:22Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Shapelet-Based Counterfactual Explanations for Multivariate Time Series [0.9990687944474738]
我々は,モデル非依存多変量時系列(MTS)の対実的説明アルゴリズムを開発した。
我々は、実生活の太陽フレア予測データセット上で、我々のアプローチを検証し、我々のアプローチが高品質な反事実を生み出すことを証明した。
視覚的に解釈可能であることに加えて、我々の説明は近接性、疎性、そして妥当性の点で優れている。
論文 参考訳(メタデータ) (2022-08-22T17:33:31Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
構造化データの解釈可能なパターン分類のためのLCCNモデルを提案する。
本手法は, 決定過程における各特徴の関連性を定量化し, 説明を提供する独自のメカニズムを提供する。
解釈可能なモデルでは,最先端の白黒ボックスと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2021-07-07T18:14:50Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Towards a Rigorous Evaluation of Explainability for Multivariate Time
Series [5.786452383826203]
本研究では,時系列予測問題におけるモデル非依存な説明可能性の実現と評価を行った。
その解決策は、販売契約を予測する時系列予測問題として問題をフレーミングすることであった。
LIMEとSHAPによる説明は、機械学習モデルによる予測を理解する上で、人間を大いに助けた。
論文 参考訳(メタデータ) (2021-04-06T17:16:36Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。