論文の概要: Investigating the Duality of Interpretability and Explainability in Machine Learning
- arxiv url: http://arxiv.org/abs/2503.21356v1
- Date: Thu, 27 Mar 2025 10:48:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:08.315444
- Title: Investigating the Duality of Interpretability and Explainability in Machine Learning
- Title(参考訳): 機械学習における解釈可能性と説明可能性の二重性の検討
- Authors: Moncef Garouani, Josiane Mothe, Ayah Barhrhouj, Julien Aligon,
- Abstract要約: 複雑な「ブラックボックス」モデルは異常な予測性能を示す。
その本質的に不透明な性質は、透明性と解釈可能性に関する懸念を提起する。
本質的に解釈可能なモデルを開発するのではなく、これらのモデルを説明することに注力しています。
- 参考スコア(独自算出の注目度): 2.8311451575532156
- License:
- Abstract: The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
- Abstract(参考訳): 機械学習(ML)の急速な進化により、ディープニューラルネットワークやアンサンブルメソッドといった複雑な「ブラックボックス」モデルが広く採用されている。
これらのモデルは非常に優れた予測性能を示しており、社会内の様々な領域において重要な意思決定に有用である。
しかし、その本質的に不透明な性質は透明性と解釈可能性に関する懸念を提起し、信頼できない意思決定支援システムを生み出している。
このようなハイリスク導入の障壁を軽減するため、研究コミュニティはブラックボックスモデルを説明する方法の開発に重点を置いてきた。
本質的に解釈可能なモデルを開発するのではなく、これらのモデルを説明することに注力しています。
しかし、当初から本質的に解釈可能なモデルの設計は、MLの分野における責任と有益なアプリケーションへの道を開くことができる。
本論文では,ブラックボックスの説明と,本質的に解釈可能なモデルの採用の因果関係を明らかにする。
我々は,モデル解釈可能性の強制的要求を強調し,より優れた(すなわち,より効果的あるいは効率のよいw.r.t.予測性能)予測器と信頼性の高い予測器を実現することを目的として,ニューラルネットワーク予測器に記号的知識を統合する最新のハイブリッド学習手法の実験評価を行った。
我々は、解釈可能なハイブリッドモデルが、異なるドメインのブラックボックスモデルに取って代わる可能性を実証する。
関連論文リスト
- SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - Model-Agnostic Interpretation Framework in Machine Learning: A
Comparative Study in NBA Sports [0.2937071029942259]
本稿では,モデル性能と解釈可能性のトレードオフを整理する,革新的な枠組みを提案する。
我々のアプローチは高次元データに対するモジュラー操作を中心とし、解釈可能性を維持しながらエンドツーエンドの処理を可能にする。
我々は、我々のフレームワークを広範囲にテストし、計算効率と解釈可能性のバランスをとる上で、その優れた効果を検証した。
論文 参考訳(メタデータ) (2024-01-05T04:25:21Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
アクティベーション最大化アプローチは、訓練されたディープラーニングモデルの解釈と解析に使用される。
本研究では,解釈を欺くためにモデルを操作する敵の概念を考察する。
論文 参考訳(メタデータ) (2023-06-12T19:54:33Z) - Quality Diversity Evolutionary Learning of Decision Trees [4.447467536572625]
MAP-Elitesは, モデル複雑性と振る舞いの多様性の両方を捉えた特徴空間上で, ハイブリッドモデルを多様化することができることを示す。
本手法をOpenAI Gymライブラリの2つのよく知られた制御問題に適用し,MAP-Elitesが提案する「照明」パターンについて議論する。
論文 参考訳(メタデータ) (2022-08-17T13:57:32Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
本稿では,逆逆強化学習を利用した新しいフレームワークを提案する。
このフレームワークは、強化学習モデルによる決定のグローバルな説明を提供する。
モデルの意思決定過程を要約することで、モデルが従う直感的な傾向を捉える。
論文 参考訳(メタデータ) (2022-03-30T17:01:59Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
構造化データの解釈可能なパターン分類のためのLCCNモデルを提案する。
本手法は, 決定過程における各特徴の関連性を定量化し, 説明を提供する独自のメカニズムを提供する。
解釈可能なモデルでは,最先端の白黒ボックスと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2021-07-07T18:14:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。