Representing and Denoising Wearable ECG Recordings
- URL: http://arxiv.org/abs/2012.00110v1
- Date: Mon, 30 Nov 2020 21:33:11 GMT
- Title: Representing and Denoising Wearable ECG Recordings
- Authors: Jeffrey Chan, Andrew C. Miller, Emily B. Fox
- Abstract summary: We develop a statistical model to simulate a structured noise process in ECGs derived from a wearable sensor.
We design a beat-to-beat representation that is conducive for analyzing variation, and devise a factor analysis-based method to denoise the ECG.
- Score: 12.378631176671773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern wearable devices are embedded with a range of noninvasive biomarker
sensors that hold promise for improving detection and treatment of disease. One
such sensor is the single-lead electrocardiogram (ECG) which measures
electrical signals in the heart. The benefits of the sheer volume of ECG
measurements with rich longitudinal structure made possible by wearables come
at the price of potentially noisier measurements compared to clinical ECGs,
e.g., due to movement. In this work, we develop a statistical model to simulate
a structured noise process in ECGs derived from a wearable sensor, design a
beat-to-beat representation that is conducive for analyzing variation, and
devise a factor analysis-based method to denoise the ECG. We study synthetic
data generated using a realistic ECG simulator and a structured noise model. At
varying levels of signal-to-noise, we quantitatively measure an upper bound on
performance and compare estimates from linear and non-linear models. Finally,
we apply our method to a set of ECGs collected by wearables in a mobile health
study.
Related papers
- MECG-E: Mamba-based ECG Enhancer for Baseline Wander Removal [23.040957989796155]
We propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E)
MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions.
It requires less inference time than state-of-the-art diffusion-based ECG denoisers.
arXiv Detail & Related papers (2024-09-27T15:22:44Z) - In-ear ECG Signal Enhancement with Denoising Convolutional Autoencoders [11.901601030527862]
In-ear ECG recordings often suffer from significant noise due to their small amplitude and the presence of other physiological signals.
This study develops a denoising convolutional autoencoder to enhance ECG information from in-ear recordings, producing cleaner ECG outputs.
arXiv Detail & Related papers (2024-08-27T16:50:57Z) - Bayesian ECG reconstruction using denoising diffusion generative models [11.603515105957461]
We propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data.
Our results show that this innovative generative model can successfully generate realistic ECG signals.
arXiv Detail & Related papers (2023-12-18T15:56:21Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - MedalCare-XL: 16,900 healthy and pathological 12 lead ECGs obtained
through electrophysiological simulations [0.12417791895581763]
Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface.
We generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes.
A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity.
arXiv Detail & Related papers (2022-11-29T07:46:39Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
We propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling.
Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals.
Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines.
arXiv Detail & Related papers (2022-10-22T18:06:11Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.