Versatile Cardiovascular Signal Generation with a Unified Diffusion Transformer
- URL: http://arxiv.org/abs/2505.22306v1
- Date: Wed, 28 May 2025 12:45:39 GMT
- Title: Versatile Cardiovascular Signal Generation with a Unified Diffusion Transformer
- Authors: Zehua Chen, Yuyang Miao, Liyuan Wang, Luyun Fan, Danilo P. Mandic, Jun Zhu,
- Abstract summary: We propose UniCardio, a multi-modal diffusion transformer that reconstructs low-quality signals and synthesizes unrecorded signals.<n>By exploiting the complementary nature of cardiovascular signals, UniCardio clearly outperforms recent task-specific baselines in signal denoising, imputation, and translation.<n>These advantages position UniCardio as a promising avenue for advancing AI-assisted healthcare.
- Score: 41.095491708125515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular signals such as photoplethysmography (PPG), electrocardiography (ECG), and blood pressure (BP) are inherently correlated and complementary, together reflecting the health of cardiovascular system. However, their joint utilization in real-time monitoring is severely limited by diverse acquisition challenges from noisy wearable recordings to burdened invasive procedures. Here we propose UniCardio, a multi-modal diffusion transformer that reconstructs low-quality signals and synthesizes unrecorded signals in a unified generative framework. Its key innovations include a specialized model architecture to manage the signal modalities involved in generation tasks and a continual learning paradigm to incorporate varying modality combinations. By exploiting the complementary nature of cardiovascular signals, UniCardio clearly outperforms recent task-specific baselines in signal denoising, imputation, and translation. The generated signals match the performance of ground-truth signals in detecting abnormal health conditions and estimating vital signs, even in unseen domains, while ensuring interpretability for human experts. These advantages position UniCardio as a promising avenue for advancing AI-assisted healthcare.
Related papers
- mCardiacDx: Radar-Driven Contactless Monitoring and Diagnosis of Arrhythmia [4.360597490291855]
Arrhythmia is a common cardiac condition that can precipitate severe complications without timely intervention.<n>Existing contactless monitoring, primarily designed for healthy subjects, face significant challenges when analyzing reflected signals from arrhythmia patients.<n>We introduce mCardiacDx, a radar-driven contactless system that accurately analyzes reflected signals and reconstructs heart pulse waveforms for arrhythmia monitoring and diagnosis.
arXiv Detail & Related papers (2025-08-04T10:40:56Z) - PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation [18.978031999678507]
A novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals.<n>Two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks.<n>A unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion.
arXiv Detail & Related papers (2025-06-12T05:11:41Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.<n>Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.<n>The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers [6.882042556551613]
We propose a deep learning method that combines a one-dimensional convolutional layer with transformer architecture for denoising ECG signals.
The embedding then is used as the input of a transformer network and enhances the capability of the transformer for denoising the ECG signal.
arXiv Detail & Related papers (2024-07-12T03:13:52Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.<n>We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Region-Disentangled Diffusion Model for High-Fidelity PPG-to-ECG
Translation [29.706347050700867]
Region-Disentangled Diffusion Model captures complex temporal dynamics of ECG signals.
New model can generate high-fidelity ECG from PPG in as few as 10 diffusion steps.
New model is first diffusion model for cross-modal signal-to-signal in bio-signal domain.
arXiv Detail & Related papers (2023-08-25T02:44:51Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions.
Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications.
We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks.
arXiv Detail & Related papers (2022-12-14T21:39:15Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.