論文の概要: Robust error bounds for quantised and pruned neural networks
- arxiv url: http://arxiv.org/abs/2012.00138v2
- Date: Tue, 27 Apr 2021 20:49:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:27:50.890874
- Title: Robust error bounds for quantised and pruned neural networks
- Title(参考訳): 量子化ニューラルネットワークとプルーニングニューラルネットワークのロバスト誤差境界
- Authors: Jiaqi Li, Ross Drummond and Stephen R. Duncan
- Abstract要約: 機械学習のアルゴリズムは、データとアルゴリズムを保存し、訓練し、デバイス上でローカルに分散化しようとしている。
デバイスハードウェアは、このセットアップにおけるモデル機能の主要なボトルネックとなり、スリム化され、より効率的なニューラルネットワークの必要性を生み出します。
半確定プログラムを導入して、ニューラルネットワークのプルーニングや定量化による最悪のケースエラーをバインドする。
計算されたバウンダリは、安全クリティカルなシステムにデプロイした場合に、これらのアルゴリズムの性能に確実性をもたらすことが期待されている。
- 参考スコア(独自算出の注目度): 1.8083503268672914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of smartphones and the internet-of-things, data is increasingly
getting generated at the edge on local, personal devices. For privacy, latency
and energy saving reasons, this shift is causing machine learning algorithms to
move towards decentralisation with the data and algorithms stored, and even
trained, locally on devices. The device hardware becomes the main bottleneck
for model capability in this set-up, creating a need for slimmed down, more
efficient neural networks. Neural network pruning and quantisation are two
methods that have been developed for this, with both approaches demonstrating
impressive results in reducing the computational cost without sacrificing
significantly on model performance. However, the understanding behind these
reduction methods remains underdeveloped. To address this issue, a
semi-definite program is introduced to bound the worst-case error caused by
pruning or quantising a neural network. The method can be applied to many
neural network structures and nonlinear activation functions with the bounds
holding robustly for all inputs in specified sets. It is hoped that the
computed bounds will provide certainty to the performance of these algorithms
when deployed on safety-critical systems.
- Abstract(参考訳): スマートフォンやモノのインターネットの普及に伴い、ローカルのパーソナルデバイス上では、データがますます発生しつつある。
プライバシ、レイテンシ、省エネの理由から、このシフトによって、マシンラーニングアルゴリズムは、デバイスにローカルに格納されたデータとアルゴリズム、さらにはトレーニング済みの分散化へと移行している。
デバイスハードウェアは、このセットアップにおけるモデル機能の主要なボトルネックとなり、スリム化されより効率的なニューラルネットワークの必要性を生み出します。
ニューラルネットワークのプルーニングと量子化は、このために開発された2つの方法であり、どちらのアプローチもモデル性能を犠牲にすることなく計算コストを削減できる素晴らしい結果を示している。
しかし、これらの削減手法の理解はいまだに未発達である。
この問題に対処するために、ニューラルネットワークのプルーニングや定量化による最悪のケースエラーをバウンドする半定プログラムを導入する。
この手法は多くのニューラルネットワーク構造や非線形活性化関数に適用でき、境界は指定された集合の全ての入力に対して頑健に保持される。
計算された境界は、安全クリティカルなシステム上にデプロイされた場合、これらのアルゴリズムの性能に確実性をもたらすことが期待されている。
関連論文リスト
- Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
ニューロモルフィックコンピューティング(Neuromorphic Computing)は、アナログメモリの計算によってこの不均衡に直面している新興パラダイムである。
この研究は、異なる学習アルゴリズムがCompute-In-Memoryベースのハードウェアに与える影響を初めて比較し、その逆も行った。
論文 参考訳(メタデータ) (2022-12-29T15:10:59Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
本稿では,ニューラルネットワークの変動と雑音下での堅牢性を高める枠組みを提案する。
ニューラルネットワークの予測精度は、変動とノイズの下で1.69%以下から回復可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T19:13:33Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
我々は、ディープニューラルネットワークを多くの2層ニューラルネットワークの検証に分解する。
我々の手法は線形プログラミングとラグランジアンに基づく検証技術の両方により改善された境界を与える。
論文 参考訳(メタデータ) (2022-10-14T19:31:39Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
機械学習アルゴリズムは、デバイスがユーザのプライバシを改善し、レイテンシを低減し、エネルギー効率を高めるために、ローカルで実行するように適応されている。
この問題に対処するために、より大きなニューロンの入出力マッピングを近似する低次ニューラルネットワーク(ニューロンが少ない)を自動的に合成する手法を導入する。
この近似誤差に対する最悪の境界が得られ、このアプローチは幅広いニューラルネットワークアーキテクチャに適用することができる。
論文 参考訳(メタデータ) (2021-02-18T12:03:57Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
本研究では,計算グラフの観点から,メモリフットプリントが小さいネットワークモデルについて紹介する。
CamVidおよびCityscapesデータセットでセマンティックセグメンテーションの最新の結果を示します。
論文 参考訳(メタデータ) (2021-01-21T15:56:29Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
ディープニューラルネットワークは、画像や言語認識など、多くの予測モデリングタスクで成功している。
モバイルデバイスのような限られた計算資源の下でこれらのネットワークをデプロイすることは困難である。
生成した出力を変更せずに、ニューラルネットワークの単位と層を除去するアルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-01T15:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。