Closed hierarchy of Heisenberg equations in integrable models with
Onsager algebra
- URL: http://arxiv.org/abs/2012.00388v4
- Date: Mon, 26 Apr 2021 15:02:23 GMT
- Title: Closed hierarchy of Heisenberg equations in integrable models with
Onsager algebra
- Authors: Oleg Lychkovskiy
- Abstract summary: Dynamics of a quantum system can be described by coupled Heisenberg equations.
In a generic many-body system these equations form an exponentially large hierarchy that is intractable without approximations.
In an integrable system a small subset of operators can be closed with respect to commutation with the Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamics of a quantum system can be described by coupled Heisenberg
equations. In a generic many-body system these equations form an exponentially
large hierarchy that is intractable without approximations. In contrast, in an
integrable system a small subset of operators can be closed with respect to
commutation with the Hamiltonian. As a result, the Heisenberg equations for
these operators can form a smaller closed system amenable to an analytical
treatment. We demonstrate that this indeed happens in a class of integrable
models where the Hamiltonian is an element of the Onsager algebra. We
explicitly solve the system of Heisenberg equations for operators from this
algebra. Two specific models are considered as examples: the transverse field
Ising model and the superintegrable chiral 3-state Potts model.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Hilbert space representation for quasi-Hermitian position-deformed Heisenberg algebra and Path integral formulation [0.0]
We show that position deformation of a Heisenberg algebra leads to loss of Hermiticity of some operators that generate this algebra.
We then construct Hilbert space representations associated with these quasi-Hermitian operators that generate a quasi-Hermitian Heisenberg algebra.
We demonstrate that the Euclidean propagator, action, and kinetic energy of this system are constrained by the standard classical mechanics limits.
arXiv Detail & Related papers (2024-04-10T15:11:59Z) - Bethe ansatz solutions and hidden $sl(2)$ algebraic structure for a
class of quasi-exactly solvable systems [0.638421840998693]
We revisit a class of models for which the odd solutions were largely missed previously in the literature.
We present a systematic and unified treatment for the odd and even sectors of these models.
We also make progress in the analysis of solutions to the Bethe ansatz equations in the spaces of model parameters.
arXiv Detail & Related papers (2023-09-21T02:04:44Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - QuantumCumulants.jl: A Julia framework for generalized mean-field
equations in open quantum systems [0.0]
We present an open-source framework that fully automizes equations of motion of operators up to a desired order.
After reviewing the theory we present the framework and showcase its usefulness in a few example problems.
arXiv Detail & Related papers (2021-05-04T08:53:02Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Solving quantum trajectories for systems with linear Heisenberg-picture
dynamics and Gaussian measurement noise [0.0]
We study solutions to the quantum trajectory evolution of $N$-mode open quantum systems possessing a time-independent Hamiltonian, linear Heisenbergpicture dynamics, and measurement noise.
To illustrate our results, we solve some single-mode example systems, with the POVMs being of practical relevance to the inference of an initial state.
arXiv Detail & Related papers (2020-04-06T03:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.