論文の概要: Use of Remote Sensing Data to Identify Air Pollution Signatures in India
- arxiv url: http://arxiv.org/abs/2012.00402v2
- Date: Mon, 18 Jan 2021 08:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 10:20:02.483076
- Title: Use of Remote Sensing Data to Identify Air Pollution Signatures in India
- Title(参考訳): リモートセンシングデータを用いたインドにおける大気汚染のシグネチャの同定
- Authors: Sivaramakrishnan KN, Lipika Deka, Manik Gupta
- Abstract要約: センチネル-5P衛星の打ち上げは、より広い範囲の大気汚染物質の観測に役立った。
クラスタリングシグネチャは、様々な汚染源から放出される汚染物質の種類に基づいて、州や地区を特定するために使用することができる。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air quality has major impact on a country's socio-economic position and
identifying major air pollution sources is at the heart of tackling the issue.
Spatially and temporally distributed air quality data acquisition across a
country as varied as India has been a challenge to such analysis. The launch of
the Sentinel-5P satellite has helped in the observation of a wider variety of
air pollutants than measured before at a global scale on a daily basis. In this
chapter, spatio-temporal multi pollutant data retrieved from Sentinel-5P
satellite is used to cluster states as well as districts in India and
associated average monthly pollution signature and trends depicted by each of
the clusters are derived and presented.The clustering signatures can be used to
identify states and districts based on the types of pollutants emitted by
various pollution sources.
- Abstract(参考訳): 大気汚染は国家の社会経済的地位に大きな影響を及ぼし、主要な大気汚染源を特定することが問題に取り組む中心となっている。
インドのように様々な国にまたがる空間的・時間的な空気質データ取得は、このような分析の課題となっている。
センチネル5P衛星の打ち上げは、地球規模の大気汚染物質を毎日観測するよりも幅広い種類の大気汚染物質を観測するのに役立った。
本章では、センチネル-5p衛星から得られた時空間的マルチ汚染物質データを、インド国内の各地域、およびそれに伴う月平均汚染サインおよび各クラスターで表される傾向を導出して提示し、各種汚染源から放出される汚染物質の種類に基づいて、国や地域を特定するためにクラスタリング署名を用いる。
関連論文リスト
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Gaussian Processes for Monitoring Air-Quality in Kampala [3.173497841606415]
本研究では,センサが存在しない場所での現在の大気汚染を予測し,センサ位置で将来の大気汚染を予測するためのガウス過程の活用について検討する。
私たちは、AirQoのセンサーネットワークのデータを使って、ウガンダのカンパラ市に焦点を当てています。
論文 参考訳(メタデータ) (2023-11-28T09:25:23Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Mitigating climate and health impact of small-scale kiln industry using
multi-spectral classifier and deep learning [5.992292768883151]
小規模産業、特にブルトレンチレンガキルンは南アジアにおける大気汚染の重要な原因の1つである。
本稿では,南アジアの「Brick-Kiln-Belt」におけるレンガキルン検出のための高分解能画像を用いた多スペクトルデータの融合を提案する。
論文 参考訳(メタデータ) (2023-03-21T07:54:58Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Air Pollution Hotspot Detection and Source Feature Analysis using
Cross-domain Urban Data [2.458537954999774]
汚染源に隣接する地域はしばしば環境汚染濃度が高く、これらは一般に大気汚染ホットスポットと呼ばれる。
本稿では,局所的なスパイク検出とサンプル重み付けクラスタリングを含む,モバイルセンシングデータからホットスポットを検出する2段階のアプローチを提案する。
ソフトバリデーションとして,モバイルセンシングデータを使用しない都市を対象としたホットスポット推定モデルを構築した。
論文 参考訳(メタデータ) (2022-11-15T18:44:03Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
地上レベルの大気汚染の既存のモデルは、しばしば局所的に制限され、時間的に静的な土地利用データセットに依存している。
本研究は,世界規模で利用でき,頻繁に更新されるリモートセンシングデータにのみ依存する環境大気汚染の予測のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T14:58:04Z) - HVAQ: A High-Resolution Vision-Based Air Quality Dataset [3.9523800511973017]
PM2.5, PM10, 温度, 湿度データからなる高時間・空間分解能空気質データセットを提案する。
我々は,センサの密度と画像によって予測精度が向上することを示すために,いくつかの視覚に基づくPM濃度予測アルゴリズムをデータセット上で評価した。
論文 参考訳(メタデータ) (2021-02-18T13:42:34Z) - Averaging Atmospheric Gas Concentration Data using Wasserstein
Barycenters [68.978070616775]
ハイパースペクトル衛星画像は、世界中の温室効果ガス濃度を毎日報告している。
気象データと組み合わさったワッサーシュタイン・バリセンタを用いて, ガス濃度データセットの平均化と, 質量集中性の向上を提案する。
論文 参考訳(メタデータ) (2020-10-06T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。