論文の概要: Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
- arxiv url: http://arxiv.org/abs/2501.11270v1
- Date: Mon, 20 Jan 2025 04:39:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:13.221525
- Title: Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
- Title(参考訳): スパースセンサデータ, 衛星画像, 気象要因, 空間的特徴を用いた都市域の時空間空気質マッピング
- Authors: Osama Ahmad, Zubair Khalid, Muhammad Tahir, Momin Uppal,
- Abstract要約: 本稿では,高時間空気質指標マッピングのためのフレームワークを提案する。
空間的および時間的依存関係に基づいて,非時間的位置におけるAQI値を推定する。
パキスタンのラホールにおけるケーススタディを通じて,我々のアプローチの活用について解説する。
- 参考スコア(独自算出の注目度): 11.845097068829551
- License:
- Abstract: Monitoring air pollution is crucial for protecting human health from exposure to harmful substances. Traditional methods of air quality monitoring, such as ground-based sensors and satellite-based remote sensing, face limitations due to high deployment costs, sparse sensor coverage, and environmental interferences. To address these challenges, this paper proposes a framework for high-resolution spatiotemporal Air Quality Index (AQI) mapping using sparse sensor data, satellite imagery, and various spatiotemporal factors. By leveraging Graph Neural Networks (GNNs), we estimate AQI values at unmonitored locations based on both spatial and temporal dependencies. The framework incorporates a wide range of environmental features, including meteorological data, road networks, points of interest (PoIs), population density, and urban green spaces, which enhance prediction accuracy. We illustrate the use of our approach through a case study in Lahore, Pakistan, where multi-resolution data is used to generate the air quality index map at a fine spatiotemporal scale.
- Abstract(参考訳): 大気汚染のモニタリングは、ヒトの健康を有害物質への曝露から守るために重要である。
地上のセンサーや衛星のリモートセンシングといった従来の大気汚染監視手法は、高い展開コスト、少ないセンサーカバレッジ、環境干渉による制限に直面している。
これらの課題に対処するために, スパースセンサデータ, 衛星画像, 各種時空間要因を用いた高分解能時空間品質指標(AQI)マッピングの枠組みを提案する。
グラフニューラルネットワーク(GNN)を利用することで、空間的および時間的依存関係の両方に基づいて、監視されていない場所でのAQI値を推定する。
このフレームワークには、気象データ、道路ネットワーク、関心点(PoI)、人口密度、都市緑地など幅広い環境特徴が含まれており、予測精度を高めている。
パキスタンのラホールで行われたケーススタディでは, 大気質指数マップを微細な時空間スケールで生成するために多分解能データを用いた。
関連論文リスト
- Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion [6.963971634605796]
本稿では,グラフ構造データに対する回帰処理に適した新しいunsupervised domain adapt(UDA)手法を提案する。
センサ間の関係をモデル化するために、時空間グラフニューラルネットワーク(STGNN)を組み込んだ。
弊社のアプローチでは、安価なIoTセンサが高価な参照センサから校正パラメータを学習できる。
論文 参考訳(メタデータ) (2024-11-11T12:20:57Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - SAT-CEP-monitor: An air quality monitoring software architecture
combining complex event processing with satellite remote sensing [2.962390297307338]
都市部は、人為的ガス排出による大気質の悪化に最も影響を受けている。
複雑なイベント処理と各種衛星センサからのリモートセンシングデータを効率的に組み合わせて,NRTの大気質をモニタリングするソフトウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-29T17:45:23Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Air Pollution Hotspot Detection and Source Feature Analysis using
Cross-domain Urban Data [2.458537954999774]
汚染源に隣接する地域はしばしば環境汚染濃度が高く、これらは一般に大気汚染ホットスポットと呼ばれる。
本稿では,局所的なスパイク検出とサンプル重み付けクラスタリングを含む,モバイルセンシングデータからホットスポットを検出する2段階のアプローチを提案する。
ソフトバリデーションとして,モバイルセンシングデータを使用しない都市を対象としたホットスポット推定モデルを構築した。
論文 参考訳(メタデータ) (2022-11-15T18:44:03Z) - Mining atmospheric data [0.0]
最初の問題は、新しい公開データセットとベンチマークの構築に関するものだ。
第2の課題は、大気データ分類のための深層学習手法の調査である。
対象とする用途は、空気質の評価と予測である。
論文 参考訳(メタデータ) (2021-06-26T10:04:35Z) - HVAQ: A High-Resolution Vision-Based Air Quality Dataset [3.9523800511973017]
PM2.5, PM10, 温度, 湿度データからなる高時間・空間分解能空気質データセットを提案する。
我々は,センサの密度と画像によって予測精度が向上することを示すために,いくつかの視覚に基づくPM濃度予測アルゴリズムをデータセット上で評価した。
論文 参考訳(メタデータ) (2021-02-18T13:42:34Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。