Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei
- URL: http://arxiv.org/abs/2012.07227v2
- Date: Thu, 17 Dec 2020 15:21:00 GMT
- Title: Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei
- Authors: Arian Vezvaee, Girish Sharma, Sophia E. Economou, and Edwin Barnes
- Abstract summary: We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interplay of optical driving and hyperfine interaction between an
electron confined in a quantum dot and its surrounding nuclear spin environment
produces a range of interesting physics such as mode-locking. In this work, we
go beyond the ubiquitous spin 1/2 approximation for nuclear spins and present a
comprehensive theoretical framework for an optically driven electron spin in a
self-assembled quantum dot coupled to a nuclear spin bath of arbitrary spin.
Using a dynamical mean-field approach, we compute the nuclear spin polarization
distribution with and without the quadrupolar coupling. We find that while
hyperfine interactions drive dynamic nuclear polarization and mode-locking,
quadrupolar couplings counteract these effects. The tension between these
mechanisms is imprinted on the steady-state electron spin evolution, providing
a way to measure the importance of quadrupolar interactions in a quantum dot.
Our results show that higher-spin effects such as quadrupolar interactions can
have a significant impact on the generation of dynamic nuclear polarization and
how it influences the electron spin evolution.
Related papers
- Effective light-induced Hamiltonian for atoms with large nuclear spin [0.0]
Coupling with off-resonance light is an essential tool to selectively and coherently manipulate the nuclear spin states.
We present a systematic derivation of the effective Hamiltonian for the nuclear spin states of ultra-cold fermionic atoms due to such an off-resonance light.
arXiv Detail & Related papers (2024-04-18T18:00:01Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Witnessing quantum correlations in a nuclear ensemble via an electron
spin qubit [0.0]
A coherent ensemble of spins interfaced with a proxy qubit is an attractive platform to create many-body coherences.
An electron spin qubit in a semiconductor quantum dot can act as such an interface to the dense nuclear spin ensemble.
We demonstrate a method to probe the spin state of a nuclear ensemble that exploits its response to collective spin excitations.
arXiv Detail & Related papers (2020-12-21T12:12:43Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.