論文の概要: Double machine learning for sample selection models
- arxiv url: http://arxiv.org/abs/2012.00745v3
- Date: Sat, 1 May 2021 09:12:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 19:35:42.868951
- Title: Double machine learning for sample selection models
- Title(参考訳): サンプル選択モデルのためのダブル機械学習
- Authors: Michela Bia, Martin Huber, Luk\'a\v{s} Laff\'ers
- Abstract要約: 本稿では,サンプル選択や帰属によるサブポピュレーションに対してのみ結果が観察される場合の個別分散処理の評価について考察する。
a)Neyman-orthogonal, Duubly robust, and efficient score function, which suggests the robustness of treatment effect Estimation to moderate regularization biases in the machine learning based Estimation of the outcome, treatment, or sample selection model and (b) sample splitting ( or cross-fitting) to prevent overfitting bias。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the evaluation of discretely distributed treatments when
outcomes are only observed for a subpopulation due to sample selection or
outcome attrition. For identification, we combine a selection-on-observables
assumption for treatment assignment with either selection-on-observables or
instrumental variable assumptions concerning the outcome attrition/sample
selection process. We also consider dynamic confounding, meaning that
covariates that jointly affect sample selection and the outcome may (at least
partly) be influenced by the treatment. To control in a data-driven way for a
potentially high dimensional set of pre- and/or post-treatment covariates, we
adapt the double machine learning framework for treatment evaluation to sample
selection problems. We make use of (a) Neyman-orthogonal, doubly robust, and
efficient score functions, which imply the robustness of treatment effect
estimation to moderate regularization biases in the machine learning-based
estimation of the outcome, treatment, or sample selection models and (b) sample
splitting (or cross-fitting) to prevent overfitting bias. We demonstrate that
the proposed estimators are asymptotically normal and root-n consistent under
specific regularity conditions concerning the machine learners and investigate
their finite sample properties in a simulation study. We also apply our
proposed methodology to the Job Corps data for evaluating the effect of
training on hourly wages which are only observed conditional on employment. The
estimator is available in the causalweight package for the statistical software
R.
- Abstract(参考訳): 本稿では,サンプル選択や帰属によるサブポピュレーションに対してのみ結果が観察される場合の個別分散処理の評価について考察する。
識別には、処理課題に対する選択可観測値の仮定と、結果の属性/サンプル選択プロセスに関する機器変数の仮定を組み合わせる。
また, ダイナミック・コンバウンディングは, 共変体が試料選択に影響を及ぼし, 結果が(少なくとも部分的に) 治療の影響を受けうることを意味している。
処理前および処理後共変量の潜在的高次元集合に対してデータ駆動型制御を行うため,2重機械学習フレームワークを用いて治療評価をサンプル選択問題に適用する。
a)Neyman-orthogonal, Duubly robust, and efficient score function, which suggests the robustness of treatment effect Estimation to moderate regularization biases in the machine learning based Estimation of the outcome, treatment, or sample selection model and (b) sample splitting ( or cross-fitting) to prevent overfitting bias。
提案手法は,機械学習者に関する特定の正規性条件下での漸近的正規性とルートnの整合性を示し,その有限標本特性についてシミュレーション研究を行った。
また,本提案手法をjob corpsデータに適用し,雇用条件のみを満たした時間給に対するトレーニングの効果を評価する。
推定器は統計ソフトウェアRの因果重みパッケージで利用可能である。
関連論文リスト
- Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) は、分析のために同等の人口を選択することで選択バイアスに対処する。
異なるマッチング手法は、すべての検証基準を満たす場合でも、同じタスクに対する平均処理効果(ATE)を著しく異なるものにすることができる。
この問題に対処するため,新しい指標A2Aを導入し,有効試合数を削減した。
論文 参考訳(メタデータ) (2024-07-20T12:42:24Z) - Estimating treatment effects from single-arm trials via latent-variable
modeling [14.083487062917085]
すべての患者が治療グループに属しているシングルアーム臨床試験は、有効な代替手段であるが、外部コントロールグループへのアクセスが必要である。
このシナリオに対して、同定可能なディープ潜在変数モデルを提案する。
その結果, 直接治療効果評価と患者マッチングによる効果評価の両面で, 性能が向上した。
論文 参考訳(メタデータ) (2023-11-06T10:12:54Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Sample Constrained Treatment Effect Estimation [28.156207324508706]
我々は,効率的なランダム化制御試験を設計することに集中し,治療の効果を正確に見積もる。
特に, サンプル制約による治療効果の推定について検討し, 実験を行うには, 集団から$s ll n$のサブセットを選択する必要がある。
論文 参考訳(メタデータ) (2022-10-12T21:13:47Z) - Avoiding Biased Clinical Machine Learning Model Performance Estimates in
the Presence of Label Selection [3.3944964838781093]
ラベル選択の3つのクラスを記述し、5つの因果的シナリオをシミュレートし、特定の選択メカニズムが、一般的に報告されているバイナリ機械学習モデルパフォーマンス指標の組に偏っているかを評価する。
その結果, 観測個体群におけるAUROCの有意な推定値が, 実成績を最大20%下回っていることがわかった。
このような格差は、成功した臨床意思決定支援ツールの誤った終了につながるのに十分大きな可能性がある。
論文 参考訳(メタデータ) (2022-09-15T22:30:14Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
本研究では,データ駆動方式で動的処理の因果効果を評価する。
いわゆるNeyman-orthogonal score関数を用いて,中等度(局所的な)不特定性に対する治療効果推定の頑健さを示唆する。
推定子は正規に正規であり、特定の条件下では$sqrtn$-consistentであることを示す。
論文 参考訳(メタデータ) (2020-12-01T09:55:40Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。