論文の概要: Pose-based Sign Language Recognition using GCN and BERT
- arxiv url: http://arxiv.org/abs/2012.00781v1
- Date: Tue, 1 Dec 2020 19:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 00:47:22.929879
- Title: Pose-based Sign Language Recognition using GCN and BERT
- Title(参考訳): gcnとbertを用いたポーズに基づく手話認識
- Authors: Anirudh Tunga, Sai Vidyaranya Nuthalapati, Juan Wachs
- Abstract要約: 単語レベルの手話認識(WSLR)は手話を理解し解釈するための最初の重要なステップである。
ビデオからサインを認識することは、単語の意味が微妙な身体の動き、手の動き、その他の動きの組み合わせに依存するため、難しい作業である。
W SLRの最近のポーズベースアーキテクチャは、異なるフレーム内のポーズ間の空間的および時間的依存関係を同時にモデル化するか、空間的情報を完全に活用せずに時間的情報のみをモデル化する。
本稿では,空間的・時間的情報を別々に捉え,遅延融合を行う新しいポーズベースアプローチを用いて,W SLRの課題に取り組む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sign language recognition (SLR) plays a crucial role in bridging the
communication gap between the hearing and vocally impaired community and the
rest of the society. Word-level sign language recognition (WSLR) is the first
important step towards understanding and interpreting sign language. However,
recognizing signs from videos is a challenging task as the meaning of a word
depends on a combination of subtle body motions, hand configurations, and other
movements. Recent pose-based architectures for WSLR either model both the
spatial and temporal dependencies among the poses in different frames
simultaneously or only model the temporal information without fully utilizing
the spatial information.
We tackle the problem of WSLR using a novel pose-based approach, which
captures spatial and temporal information separately and performs late fusion.
Our proposed architecture explicitly captures the spatial interactions in the
video using a Graph Convolutional Network (GCN). The temporal dependencies
between the frames are captured using Bidirectional Encoder Representations
from Transformers (BERT). Experimental results on WLASL, a standard word-level
sign language recognition dataset show that our model significantly outperforms
the state-of-the-art on pose-based methods by achieving an improvement in the
prediction accuracy by up to 5%.
- Abstract(参考訳): 手話認識(SLR)は、聴覚と聴覚障害のあるコミュニティと他の社会とのコミュニケーションギャップを埋める上で重要な役割を担っている。
単語レベルの手話認識(WSLR)は手話を理解し解釈するための最初の重要なステップである。
しかし、言葉の意味は微妙な体の動き、手の動き、その他の動きの組み合わせに依存するため、ビデオからサインを認識することは難しい作業である。
WSLRの最近のポーズベースアーキテクチャは、異なるフレーム内のポーズ間の空間的および時間的依存関係を同時にモデル化するか、空間的情報を完全に活用せずに時間的情報のみをモデル化する。
本稿では,空間的および時間的情報を分離し,遅延融合を行う新しいポーズベースアプローチを用いて,wslrの問題に取り組む。
提案するアーキテクチャは,ビデオ内の空間的相互作用をグラフ畳み込みネットワーク(gcn)を用いて明示的に捉える。
フレーム間の時間的依存関係は、変換器(BERT)からの双方向エンコーダ表現を用いてキャプチャされる。
標準の単語レベル手話認識データセットであるwlaslの実験結果は, 予測精度を最大5%向上させることで, ポーズベース手法の最先端を著しく上回っていることを示している。
関連論文リスト
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
本研究では,空間的時間的整合性を通じてリッチな文脈を探索する自己教師付きコントラスト学習フレームワークを提案する。
動きと関節のモーダル性の相補性に着想を得て,手話モデルに一階動作情報を導入する。
提案手法は,4つの公開ベンチマークの広範な実験により評価され,新しい最先端性能と顕著なマージンを実現している。
論文 参考訳(メタデータ) (2024-06-15T04:50:19Z) - MASA: Motion-aware Masked Autoencoder with Semantic Alignment for Sign Language Recognition [94.56755080185732]
本研究では,リッチモーションキューとグローバルセマンティック情報を統合したセマンティックアライメント(MASA)を用いたMotion-Awareマスク付きオートエンコーダを提案する。
我々のフレームワークは,包括的手話表現のための局所的な動きの手がかりとグローバルな意味的特徴を同時に学習することができる。
論文 参考訳(メタデータ) (2024-05-31T08:06:05Z) - Enhancing Brazilian Sign Language Recognition through Skeleton Image Representation [2.6311088262657907]
本研究は、身体、手、顔のランドマークを時間を通して抽出し、2次元画像として符号化する、分離手話認識(ISLR)アプローチを提案する。
ブラジル手話(LIBRAS)における2つの広く認識されているデータセットの性能指標から,本手法が最先端の指標を上回ったことを示す。
より正確であることに加えて、より単純なネットワークアーキテクチャに依存し、入力としてのみRGBデータに依存するため、我々の手法はより時間効率が高く、訓練が容易である。
論文 参考訳(メタデータ) (2024-04-29T23:21:17Z) - Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding [112.3913646778859]
簡単なビデオ言語モデリングフレームワークであるS-ViLMを提案する。
これには、学習領域オブジェクトのアライメントと時間認識機能を促進するために、クリップ間の空間的接地と、クリップ内の時間的グループ化という、2つの新しい設計が含まれている。
S-ViLMは4つの下流タスクにおいて、最先端の手法を大幅に超えている。
論文 参考訳(メタデータ) (2023-03-28T22:45:07Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
手話は視覚言語であり、語彙は話し言葉と同じくらい豊かである。
現在の深層学習に基づく手話生成(SLP)モデルでは、アンダーアーティキュレートされたスケルトンポーズシーケンスが生成される。
我々は,辞書記号間の協調処理を学習することで,大規模SLPに取り組む。
また,ポーズ条件付き人間の合成モデルであるSignGANを提案する。
論文 参考訳(メタデータ) (2022-03-29T08:51:38Z) - Sign Language Recognition via Skeleton-Aware Multi-Model Ensemble [71.97020373520922]
手話は一般的に、聴覚障害者やミュート人がコミュニケーションするために使われる。
孤立手話認識(SLR)のためのGlobal Ensemble Model(GEM)を用いた新しいマルチモーダルフレームワークを提案する。
提案するSAM-SLR-v2 フレームワークは極めて有効であり,最先端の性能を高いマージンで達成している。
論文 参考訳(メタデータ) (2021-10-12T16:57:18Z) - Multi-Modal Zero-Shot Sign Language Recognition [51.07720650677784]
マルチモーダルなゼロショット手話認識モデルを提案する。
C3DモデルとともにTransformerベースのモデルを使用して手の検出と深い特徴抽出を行う。
意味空間は、視覚的特徴をクラスラベルの言語的な埋め込みにマッピングするために使用される。
論文 参考訳(メタデータ) (2021-09-02T09:10:39Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
単語レベルの手話認識(WSLR)は手話解釈の基本課題である。
ドメイン不変の視覚概念を学習し、サブタイトルのニュースサインの知識を伝達することでWSLRモデルを肥大化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-08T03:05:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。