論文の概要: Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition
- arxiv url: http://arxiv.org/abs/2406.10501v1
- Date: Sat, 15 Jun 2024 04:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:12:44.300366
- Title: Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition
- Title(参考訳): 手話認識のための空間的一貫性を用いた自己教師付き表現学習
- Authors: Weichao Zhao, Wengang Zhou, Hezhen Hu, Min Wang, Houqiang Li,
- Abstract要約: 本研究では,空間的時間的整合性を通じてリッチな文脈を探索する自己教師付きコントラスト学習フレームワークを提案する。
動きと関節のモーダル性の相補性に着想を得て,手話モデルに一階動作情報を導入する。
提案手法は,4つの公開ベンチマークの広範な実験により評価され,新しい最先端性能と顕著なマージンを実現している。
- 参考スコア(独自算出の注目度): 96.62264528407863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there have been efforts to improve the performance in sign language recognition by designing self-supervised learning methods. However, these methods capture limited information from sign pose data in a frame-wise learning manner, leading to sub-optimal solutions. To this end, we propose a simple yet effective self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency from two distinct perspectives and learn instance discriminative representation for sign language recognition. On one hand, since the semantics of sign language are expressed by the cooperation of fine-grained hands and coarse-grained trunks, we utilize both granularity information and encode them into latent spaces. The consistency between hand and trunk features is constrained to encourage learning consistent representation of instance samples. On the other hand, inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling. Additionally, we further bridge the interaction between the embedding spaces of both modalities, facilitating bidirectional knowledge transfer to enhance sign language representation. Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin. The source code is publicly available at https://github.com/sakura/Code.
- Abstract(参考訳): 近年,自己指導型学習手法を設計することで手話認識の性能向上に努めている。
しかし、これらの手法は、フレームワイズ学習方式で手話データから限られた情報をキャプチャし、サブ最適解をもたらす。
この目的のために,2つの異なる視点から空間的時間的整合性を通してリッチな文脈を抽出し,手話認識のためのインスタンス識別表現を学習する,シンプルで効果的な自己指導型コントラスト学習フレームワークを提案する。
一方,手話の意味論は細粒度の手と粗粒度トランクの協調によって表現されるため,粒度情報とそれを潜在空間にエンコードする。
手動とトランクの特徴の一貫性は、インスタンスサンプルの一貫性のある表現の学習を促進するために制約される。
一方,動作の相補性や関節モーダル性に着想を得て,手話モデルに一階動作情報を導入する。
さらに、両モードの埋め込み空間間の相互作用をさらに橋渡しし、双方向の知識伝達を容易にし、手話表現を強化する。
提案手法は,4つの公開ベンチマークの広範な実験により評価され,新しい最先端性能と顕著なマージンを実現している。
ソースコードはhttps://github.com/sakura/Code.comで公開されている。
関連論文リスト
- MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
我々は,手話と非手話のユーザ間のコミュニケーションを緩和する,連続手話生成のための統一フレームワークを提案する。
テキストや音声から抽出した埋め込みを利用したシーケンス拡散モデルを作成し、段階的にサイン予測を生成する。
How2SignとPHOENIX14Tデータセットの実験により、手話生成において、我々のモデルが競合性能を達成することを示す。
論文 参考訳(メタデータ) (2024-07-04T13:53:50Z) - SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale [22.49602248323602]
手話ビデオ処理における永続的な課題は、手話表現の学習方法である。
提案手法は,シグナーの顔,手,体姿勢など,署名ビデオの最も関連性の高い部分のみに焦点を当てる。
我々のアプローチは、個々のフレームから(ビデオシーケンスではなく)学習することに基づいており、手話事前学習よりもずっと効率的である。
論文 参考訳(メタデータ) (2024-06-11T03:00:41Z) - MASA: Motion-aware Masked Autoencoder with Semantic Alignment for Sign Language Recognition [94.56755080185732]
本研究では,リッチモーションキューとグローバルセマンティック情報を統合したセマンティックアライメント(MASA)を用いたMotion-Awareマスク付きオートエンコーダを提案する。
我々のフレームワークは,包括的手話表現のための局所的な動きの手がかりとグローバルな意味的特徴を同時に学習することができる。
論文 参考訳(メタデータ) (2024-05-31T08:06:05Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
本稿では,多言語手話コーパスを用いた連続手話認識の実現可能性について検討する。
まず、2つのデータセットに現れる独立した記号を含む2つの手話辞書を構築します。
次に、適切に最適化された手話認識モデルを用いて、2つの手話間の手話間の手話マッピングを同定する。
論文 参考訳(メタデータ) (2023-08-21T15:58:47Z) - Learnt Contrastive Concept Embeddings for Sign Recognition [33.72708697077754]
我々は手話と話し言葉のギャップを埋める手話埋め込みを明示的に作成することに注力する。
我々は手話ビデオの言語ラベルに基づく埋め込みの語彙を訓練する。
我々は,NLP法から単語埋め込みを活用可能な概念的類似性損失を開発し,音声言語対応に優れた手話を含む手話埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-18T12:47:18Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
手の動きは手話の表現において重要な役割を担っている。
現在,手話理解(SLU)の深層学習手法は,手話データ資源の不足により過度に適合する傾向にある。
モデル認識ハンドを組み込んだ初の自己教師型事前学習型SignBERT+フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T17:16:38Z) - Context Matters: Self-Attention for Sign Language Recognition [1.005130974691351]
本稿では,継続的署名言語認識の課題に対する注目ネットワークを提案する。
符号言語のモダリティをモデル化するために、データの共依存ストリームを利用する。
モデルが支配的な手と顔の領域の周りを回転する重要な手話コンポーネントを識別することができることがわかります。
論文 参考訳(メタデータ) (2021-01-12T17:40:19Z) - Pose-based Sign Language Recognition using GCN and BERT [0.0]
単語レベルの手話認識(WSLR)は手話を理解し解釈するための最初の重要なステップである。
ビデオからサインを認識することは、単語の意味が微妙な身体の動き、手の動き、その他の動きの組み合わせに依存するため、難しい作業である。
W SLRの最近のポーズベースアーキテクチャは、異なるフレーム内のポーズ間の空間的および時間的依存関係を同時にモデル化するか、空間的情報を完全に活用せずに時間的情報のみをモデル化する。
本稿では,空間的・時間的情報を別々に捉え,遅延融合を行う新しいポーズベースアプローチを用いて,W SLRの課題に取り組む。
論文 参考訳(メタデータ) (2020-12-01T19:10:50Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
単語レベルの手話認識(WSLR)は手話解釈の基本課題である。
ドメイン不変の視覚概念を学習し、サブタイトルのニュースサインの知識を伝達することでWSLRモデルを肥大化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-08T03:05:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。