Single Image Reflection Removal with Reflection Intensity Prior
Knowledge
- URL: http://arxiv.org/abs/2312.03798v1
- Date: Wed, 6 Dec 2023 14:52:11 GMT
- Title: Single Image Reflection Removal with Reflection Intensity Prior
Knowledge
- Authors: Dongshen Han, Seungkyu Lee, Chaoning Zhang, Heechan Yoon, Hyukmin
Kwon, HyunCheol Kim, HyonGon Choo
- Abstract summary: We propose a general reflection intensity prior that captures the intensity of the reflection phenomenon.
By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image.
We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture.
- Score: 14.335849624907611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single Image Reflection Removal (SIRR) in real-world images is a challenging
task due to diverse image degradations occurring on the glass surface during
light transmission and reflection. Many existing methods rely on specific prior
assumptions to resolve the problem. In this paper, we propose a general
reflection intensity prior that captures the intensity of the reflection
phenomenon and demonstrate its effectiveness. To learn the reflection intensity
prior, we introduce the Reflection Prior Extraction Network (RPEN). By
segmenting images into regional patches, RPEN learns non-uniform reflection
prior in an image. We propose Prior-based Reflection Removal Network (PRRN)
using a simple transformer U-Net architecture that adapts reflection prior fed
from RPEN. Experimental results on real-world benchmarks demonstrate the
effectiveness of our approach achieving state-of-the-art accuracy in SIRR.
Related papers
- Monocular Identity-Conditioned Facial Reflectance Reconstruction [71.90507628715388]
Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models.
We learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance.
Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training.
arXiv Detail & Related papers (2024-03-30T09:43:40Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
We propose a single image reflection removal method based on context understanding modules and adversarial training.
Our proposed reflection removal method outperforms state-of-the-art methods in terms of PSNR and SSIM on the SIR benchmark dataset.
arXiv Detail & Related papers (2021-05-11T17:33:40Z) - Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal [6.370905925442655]
We propose an iterative gradient encoding network for single image reflection removal.
Our method can remove reflection favorably against the existing state-of-the-art method on all imaging settings.
arXiv Detail & Related papers (2021-03-29T19:29:29Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
We propose a novel learning-based solution that combines the advantages of the aforementioned approaches and overcomes their drawbacks.
Our algorithm works by learning a deep neural network to optimize the target with joint constraints enhanced among multiple input images.
Our algorithm runs in real-time and state-of-the-art reflection removal performance on real images.
arXiv Detail & Related papers (2019-12-08T06:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.