Monocular Identity-Conditioned Facial Reflectance Reconstruction
- URL: http://arxiv.org/abs/2404.00301v1
- Date: Sat, 30 Mar 2024 09:43:40 GMT
- Title: Monocular Identity-Conditioned Facial Reflectance Reconstruction
- Authors: Xingyu Ren, Jiankang Deng, Yuhao Cheng, Jia Guo, Chao Ma, Yichao Yan, Wenhan Zhu, Xiaokang Yang,
- Abstract summary: Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models.
We learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance.
Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training.
- Score: 71.90507628715388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent 3D face reconstruction methods have made remarkable advancements, yet there remain huge challenges in monocular high-quality facial reflectance reconstruction. Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models. However, the lack of subject diversity poses challenges in achieving good generalization and widespread applicability. In this paper, we learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance. Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training. Our key insight is that reflectance data shares facial structures with RGB faces, which enables obtaining expressive facial prior from inexpensive RGB data thus reducing the dependency on reflectance data. We first learn a high-quality prior for facial reflectance. Specifically, we pretrain multi-domain facial feature codebooks and design a codebook fusion method to align the reflectance and RGB domains. Then, we propose an identity-conditioned swapping module that injects facial identity from the target image into the pre-trained autoencoder to modify the identity of the source reflectance image. Finally, we stitch multi-view swapped reflectance images to obtain renderable assets. Extensive experiments demonstrate that our method exhibits excellent generalization capability and achieves state-of-the-art facial reflectance reconstruction results for in-the-wild faces. Our project page is https://xingyuren.github.io/id2reflectance/.
Related papers
- Planar Reflection-Aware Neural Radiance Fields [32.709468082010126]
We introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections.
Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections.
arXiv Detail & Related papers (2024-11-07T18:55:08Z) - Robust Geometry and Reflectance Disentanglement for 3D Face
Reconstruction from Sparse-view Images [12.648827250749587]
This paper presents a novel two-stage approach for reconstructing human faces from sparse-view images.
Our method focuses on decomposing key facial attributes, including geometry, diffuse reflectance, and specular reflectance, from ambient light.
arXiv Detail & Related papers (2023-12-11T03:14:58Z) - Single Image Reflection Removal with Reflection Intensity Prior
Knowledge [14.335849624907611]
We propose a general reflection intensity prior that captures the intensity of the reflection phenomenon.
By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image.
We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture.
arXiv Detail & Related papers (2023-12-06T14:52:11Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
Methods combining deep neural network encoders with differentiable rendering have opened up the path for very fast monocular reconstruction of geometry, lighting and reflectance.
ray tracing was introduced for monocular face reconstruction within a classic optimization-based framework.
We propose a new method that greatly improves reconstruction quality and robustness in general scenes.
arXiv Detail & Related papers (2021-03-29T08:58:10Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Monocular Reconstruction of Neural Face Reflectance Fields [0.0]
The reflectance field of a face describes the reflectance properties responsible for complex lighting effects.
Most existing methods for estimating the face reflectance from a monocular image assume faces to be diffuse with very few approaches adding a specular component.
We present a new neural representation for face reflectance where we can estimate all components of the reflectance responsible for the final appearance from a single monocular image.
arXiv Detail & Related papers (2020-08-24T08:19:05Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
We propose a novel learning-based solution that combines the advantages of the aforementioned approaches and overcomes their drawbacks.
Our algorithm works by learning a deep neural network to optimize the target with joint constraints enhanced among multiple input images.
Our algorithm runs in real-time and state-of-the-art reflection removal performance on real images.
arXiv Detail & Related papers (2019-12-08T06:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.