論文の概要: Modeling patient flow in the emergency department using machine learning
and simulation
- arxiv url: http://arxiv.org/abs/2012.01192v1
- Date: Sun, 22 Nov 2020 17:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 12:27:12.326961
- Title: Modeling patient flow in the emergency department using machine learning
and simulation
- Title(参考訳): 機械学習とシミュレーションによる救急部門における患者フローのモデル化
- Authors: Emad Alenany, Abdessamad Ait El Cadi
- Abstract要約: 本稿では,緊急部(ED)内の患者フローを改善するため,シミュレーションにおける機械学習(ML)の新たな応用について述べる。
実際のEDシミュレーションモデル内で使用したMLモデルを用いて、患者をEDから遠ざけることが滞在時間(LOS)と退院時間(DTDT)に及ぼす影響を定量化する
使用済みのポリシーと特定のEDリソースを追加することで、それぞれ LOS と DTDT の 9.39% と 8.18% の削減が達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the combination of machine learning (ML) and simulation is gaining
a lot of attention. This paper presents a novel application of ML within the
simulation to improve patient flow within an emergency department (ED). An ML
model used within a real ED simulation model to quantify the effect of
detouring a patient out of the ED on the length of stay (LOS) and
door-to-doctor time (DTDT) as a response to the prediction of patient admission
to the hospital from the ED. The ML model trained using a set of six features
including the patient age, arrival day, arrival hour of the day, and the triage
level. The prediction model used a decision tree (DT) model, which is trained
using historical data achieves a 75% accuracy. The set of rules extracted from
the DT are coded within the simulation model. Given a certain probability of
free inpatient beds, the predicted admitted patient is then pulled out from the
ED to inpatient units to alleviate the crowding within the ED. The used policy
combined with adding specific ED resources achieve 9.39% and 8.18% reduction in
LOS and DTDT, respectively.
- Abstract(参考訳): 近年,機械学習(ML)とシミュレーションの組み合わせが注目されている。
本稿では,緊急部(ED)内の患者フローを改善するため,シミュレーションにおけるMLの新たな適用法を提案する。
実際の ED シミュレーションモデルを用いて,患者を ED から退院させる効果を定量的に評価し,患者が ED から入院するまでの期間 (LOS) と退院までの時間 (DTDT) を推定した。
MLモデルでは,患者年齢,到着日,到着時刻,トリアージレベルを含む6つの特徴のセットを用いてトレーニングを行った。
予測モデルは決定木 (DT) モデルを用い, 履歴データを用いてトレーニングした結果, 75%の精度が得られた。
DTから抽出されたルールのセットはシミュレーションモデル内でコーディングされる。
患者が自由なベッドに入る確率を考慮し、患者はED内の群集を緩和するために、EDから患者ユニットへと引き抜かれる。
使用済みのポリシーと特定のEDリソースを追加することで、それぞれ LOS と DTDT の 9.39% と 8.18% の削減が達成される。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning [3.9054437595657534]
イスラエルのランバム医療センターの患者ケア需要データを用いて, 両モデルが時間差の患者需要を効果的に捉えていることを示す。
機械学習を用いて3日または1週間前に、患者のケア需要を精度よく予測できる(約4人)。
論文 参考訳(メタデータ) (2024-04-29T13:05:59Z) - IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
本研究では、患者動態を学習し、個人の人口動態の特徴や治療に合わせたパーソナライズされた値を生成する新しいディープラーニングモデルを提案する。
提案モデルであるIGNITEは,2段階の注意を付加した条件付き2変分オートエンコーダを用いて,個人に対して欠落した値を生成する。
IGNITEは,データ再構成の欠如やタスク予測において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-09T07:57:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
本研究では,ERHにおける不規則な時系列に対処するため,COPERと呼ばれる新規患者状態パーセンシバーモデルを提案する。
ニューラル常微分方程式(ODE)は、COPERが通常の時系列を生成してPerceiverモデルに供給するのに役立ちます。
提案モデルの性能評価には,MIMIC-IIIデータセット上での院内死亡予測タスクを用いる。
論文 参考訳(メタデータ) (2022-08-05T14:32:57Z) - Learning to Adapt Clinical Sequences with Residual Mixture of Experts [12.881413375147996]
全患者の複雑な動態を表現するために,Mixture-of-Experts (MoE)アーキテクチャを提案する。
アーキテクチャは、患者サブポピュレーションをカバーし、ベースモデルの予測を精査する複数の(専門的な)RNNモデルで構成されている。
一つのRNN予測と比較すると, AUPRC統計は4.1%向上した。
論文 参考訳(メタデータ) (2022-04-06T09:23:12Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。