Contour Transformer Network for One-shot Segmentation of Anatomical
Structures
- URL: http://arxiv.org/abs/2012.01480v1
- Date: Wed, 2 Dec 2020 19:42:18 GMT
- Title: Contour Transformer Network for One-shot Segmentation of Anatomical
Structures
- Authors: Yuhang Lu, Kang Zheng, Weijian Li, Yirui Wang, Adam P. Harrison,
Chihung Lin, Song Wang, Jing Xiao, Le Lu, Chang-Fu Kuo, Shun Miao
- Abstract summary: We present Contour Transformer Network (CTN), a one-shot anatomy segmentation method with a naturally built-in human-in-the-loop mechanism.
On segmentation tasks of four different anatomies, we demonstrate that our one-shot learning method significantly outperforms non-learning-based methods.
With minimal human-in-the-loop editing feedback, the segmentation performance can be further improved to surpass the fully supervised methods.
- Score: 26.599337546171732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of anatomical structures is vital for medical image
analysis. The state-of-the-art accuracy is typically achieved by supervised
learning methods, where gathering the requisite expert-labeled image
annotations in a scalable manner remains a main obstacle. Therefore,
annotation-efficient methods that permit to produce accurate anatomical
structure segmentation are highly desirable. In this work, we present Contour
Transformer Network (CTN), a one-shot anatomy segmentation method with a
naturally built-in human-in-the-loop mechanism. We formulate anatomy
segmentation as a contour evolution process and model the evolution behavior by
graph convolutional networks (GCNs). Training the CTN model requires only one
labeled image exemplar and leverages additional unlabeled data through newly
introduced loss functions that measure the global shape and appearance
consistency of contours. On segmentation tasks of four different anatomies, we
demonstrate that our one-shot learning method significantly outperforms
non-learning-based methods and performs competitively to the state-of-the-art
fully supervised deep learning methods. With minimal human-in-the-loop editing
feedback, the segmentation performance can be further improved to surpass the
fully supervised methods.
Related papers
- Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
We aim at modeling shape explicitly and using it to help medical image segmentation.
Previous methods proposed Variational Autoencoder (VAE) based models to learn the distribution of shape for a particular organ.
We propose a new unsupervised domain adaptation pipeline based on a pseudo loss and a VAE reconstruction loss under a teacher-student learning paradigm.
arXiv Detail & Related papers (2022-07-06T09:16:42Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
We present an end-to-end weakly-supervised framework to automatically detect and segment NeuN stained neuronal cells on histological images.
We integrate the state-of-the-art network, EfficientNet, into our U-Net-like architecture.
arXiv Detail & Related papers (2022-02-17T14:35:45Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.