論文の概要: Domain Adaptation with Incomplete Target Domains
- arxiv url: http://arxiv.org/abs/2012.01606v1
- Date: Thu, 3 Dec 2020 00:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 15:10:43.235301
- Title: Domain Adaptation with Incomplete Target Domains
- Title(参考訳): 不完全なターゲットドメインによるドメイン適応
- Authors: Zhenpeng Li, Jianan Jiang, Yuhong Guo, Tiantian Tang, Chengxiang Zhuo,
Jieping Ye
- Abstract要約: 本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案モデルでは,対象領域における部分的な観測に基づいて,欠落した特徴値を満たすデータ計算モジュールを設計する。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
- 参考スコア(独自算出の注目度): 65.38480076899634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation, as a task of reducing the annotation cost in a target
domain by exploiting the existing labeled data in an auxiliary source domain,
has received a lot of attention in the research community. However, the
standard domain adaptation has assumed perfectly observed data in both domains,
while in real world applications the existence of missing data can be
prevalent. In this paper, we tackle a more challenging domain adaptation
scenario where one has an incomplete target domain with partially observed
data. We propose an Incomplete Data Imputation based Adversarial Network
(IDIAN) model to address this new domain adaptation challenge. In the proposed
model, we design a data imputation module to fill the missing feature values
based on the partial observations in the target domain, while aligning the two
domains via deep adversarial adaption. We conduct experiments on both
cross-domain benchmark tasks and a real world adaptation task with imperfect
target domains. The experimental results demonstrate the effectiveness of the
proposed method.
- Abstract(参考訳): ドメイン適応は、既存のラベル付きデータを補助ソースドメインに活用することにより、対象ドメインのアノテーションコストを低減させるタスクとして、研究コミュニティで注目されている。
しかし、標準的なドメイン適応は両方のドメインで完全に観測されたデータを想定しているが、現実のアプリケーションでは欠落データの存在が一般的である。
本稿では、部分的に観測されたデータを持つ不完全なターゲットドメインを持つドメイン適応シナリオに挑戦する。
本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案するモデルでは,対象領域における部分的観測に基づいて欠落する特徴値を満たすためのデータインプテーションモジュールを設計し,その2つの領域を深い逆適応によって整合させる。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- GenGMM: Generalized Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.9626666671366837]
一般化ガウス混合(GenGMM)ドメイン適応モデルを導入する。
実験は我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-21T20:21:09Z) - Style Adaptation for Domain-adaptive Semantic Segmentation [2.1365683052370046]
ドメインの不一致は、ターゲットドメインに適用した場合、ソースドメインデータに基づいてトレーニングされた一般的なネットワークモデルの性能を著しく低下させる。
パラメータ計算を必要とせず、自己学習に基づくUDA手法とシームレスに統合する。
提案手法は,GTA->Cityscapesデータセット上で76.93 mIoUの有意なUDA性能を達成し,過去の成果に比べて+1.03ポイント向上したことを示す。
論文 参考訳(メタデータ) (2024-04-25T02:51:55Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
セマンティックセグメンテーションタスクに関するドメイン適応を支援するために,アクティブなサンプル選択を導入する。
これらのサンプルを手動でアノテートする作業量が少ないため、ターゲット領域分布の歪みを効果的に緩和することができる。
長期分布問題を緩和するために、強力な半教師付きドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T07:55:22Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - Generalized Zero-Shot Domain Adaptation via Coupled Conditional
Variational Autoencoders [23.18781318003242]
本研究では,新しい条件結合型変分自動エンコーダ(CCVAE)を提案する。
航空セキュリティにおける現実の応用をシミュレートするために、X線セキュリティチェックポイントデータセットを含む3つのドメイン適応データセットで実験が行われた。
論文 参考訳(メタデータ) (2020-08-03T21:48:50Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Unsupervised Domain Adaptation with Multiple Domain Discriminators and
Adaptive Self-Training [22.366638308792734]
Unsupervised Domain Adaptation (UDA)は、ソースドメインでトレーニングされたモデルの一般化能力を改善し、ラベル付きデータが使用できないターゲットドメインでうまく機能することを目的としている。
本稿では、合成データに基づいて訓練されたディープニューラルネットワークを、2つの異なるデータ分布間のドメインシフトに対処する実シーンに適用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-27T11:48:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。