論文の概要: Style Adaptation for Domain-adaptive Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2404.16301v1
- Date: Thu, 25 Apr 2024 02:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:58:12.966128
- Title: Style Adaptation for Domain-adaptive Semantic Segmentation
- Title(参考訳): ドメイン適応セマンティックセマンティックセグメンテーションのためのスタイル適応
- Authors: Ting Li, Jianshu Chao, Deyu An,
- Abstract要約: ドメインの不一致は、ターゲットドメインに適用した場合、ソースドメインデータに基づいてトレーニングされた一般的なネットワークモデルの性能を著しく低下させる。
パラメータ計算を必要とせず、自己学習に基づくUDA手法とシームレスに統合する。
提案手法は,GTA->Cityscapesデータセット上で76.93 mIoUの有意なUDA性能を達成し,過去の成果に比べて+1.03ポイント向上したことを示す。
- 参考スコア(独自算出の注目度): 2.1365683052370046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) refers to the method that utilizes annotated source domain data and unlabeled target domain data to train a model capable of generalizing to the target domain data. Domain discrepancy leads to a significant decrease in the performance of general network models trained on the source domain data when applied to the target domain. We introduce a straightforward approach to mitigate the domain discrepancy, which necessitates no additional parameter calculations and seamlessly integrates with self-training-based UDA methods. Through the transfer of the target domain style to the source domain in the latent feature space, the model is trained to prioritize the target domain style during the decision-making process. We tackle the problem at both the image-level and shallow feature map level by transferring the style information from the target domain to the source domain data. As a result, we obtain a model that exhibits superior performance on the target domain. Our method yields remarkable enhancements in the state-of-the-art performance for synthetic-to-real UDA tasks. For example, our proposed method attains a noteworthy UDA performance of 76.93 mIoU on the GTA->Cityscapes dataset, representing a notable improvement of +1.03 percentage points over the previous state-of-the-art results.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA) は、注釈付きソースドメインデータとラベルなしターゲットドメインデータを利用して、ターゲットドメインデータに一般化可能なモデルを訓練する手法である。
ドメインの不一致は、ターゲットドメインに適用した場合、ソースドメインデータに基づいてトレーニングされた一般的なネットワークモデルの性能を著しく低下させる。
パラメータ計算を必要とせず、自己学習に基づくUDA手法とシームレスに統合する。
潜在特徴空間における対象ドメインスタイルをソースドメインに転送することで、モデルは意思決定プロセス中に対象ドメインスタイルを優先順位付けするように訓練される。
対象ドメインからソースドメインデータにスタイル情報を転送することで,画像レベルと浅部特徴マップレベルでの問題に対処する。
その結果,対象領域に対して優れた性能を示すモデルが得られた。
提案手法は, 合成-実 UDA タスクの最先端性能を著しく向上させる。
例えば,提案手法は,GTA->Cityscapesデータセット上で76.93 mIoUの有意なUDA性能を達成し,従来よりも1.03ポイント向上したことを示す。
関連論文リスト
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
シーンテキスト認識(STR)において、教師なしドメイン適応(UDA)がますます普及している。
本稿では,StrDA(Stratified Domain Adaptation)アプローチを導入し,学習プロセスにおける領域ギャップの段階的エスカレーションについて検討する。
本稿では,データサンプルの分布外および領域判別レベルを推定するために,領域判別器を用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-13T16:40:48Z) - Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
ドメイン適応(ドメイン適応、Domain Adaptation、DA)は、アノテートデータが不十分なターゲットドメインにおけるモデルの性能を高める方法である。
本研究では,対象領域のサンプルに基づいてトレーニングしたテキスト・ツー・イメージ拡散モデルを用いて,ソースデータを生成する新しいSFDAフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T23:38:17Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
本稿では,未ラベル対象領域データの予測のための教師なし領域適応(UDA)手法を提案する。
本稿では,AVATAR(Adversarial Self-superVised Domain Adaptation Network for the TARget domain)アルゴリズムを提案する。
提案手法は,3つのUDAベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-04-28T20:31:56Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) は、与えられた事前訓練されたモデルを、目に見えないターゲットドメインに適応させる。
我々は指数的に減衰する運動量因子を用いて、正規化層統計を対象領域に部分的に適応させる。
標準的なUDAアプローチと比較して、ソースドメイン表現のパフォーマンスと利用のトレードオフを報告します。
論文 参考訳(メタデータ) (2020-11-17T08:37:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。