論文の概要: Learning Hyperbolic Representations for Unsupervised 3D Segmentation
- arxiv url: http://arxiv.org/abs/2012.01644v2
- Date: Fri, 4 Dec 2020 23:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 14:58:17.264586
- Title: Learning Hyperbolic Representations for Unsupervised 3D Segmentation
- Title(参考訳): 教師なし3次元セグメンテーションのための双曲表現の学習
- Authors: Joy Hsu, Jeffrey Gu, Gong-Her Wu, Wah Chiu, Serena Yeung
- Abstract要約: 本稿では,双曲型潜在空間を持つ変分オートエンコーダ(VAE)とジャイロプレーン畳み込み層を用いて,教師なしセグメンテーションのための3次元パッチの効果的表現を提案する。
階層型トイデータセット,BraTS全腫瘍データセット,低温電子顕微鏡データを用いた非教師なし3次元セグメンテーションにおけるハイパーボリック表現の有効性を実証した。
- 参考スコア(独自算出の注目度): 3.516233423854171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There exists a need for unsupervised 3D segmentation on complex volumetric
data, particularly when annotation ability is limited or discovery of new
categories is desired. Using the observation that much of 3D volumetric data is
innately hierarchical, we propose learning effective representations of 3D
patches for unsupervised segmentation through a variational autoencoder (VAE)
with a hyperbolic latent space and a proposed gyroplane convolutional layer,
which better models the underlying hierarchical structure within a 3D image. We
also introduce a hierarchical triplet loss and multi-scale patch sampling
scheme to embed relationships across varying levels of granularity. We
demonstrate the effectiveness of our hyperbolic representations for
unsupervised 3D segmentation on a hierarchical toy dataset, BraTS whole tumor
dataset, and cryogenic electron microscopy data.
- Abstract(参考訳): 複雑なボリュームデータには教師なしの3Dセグメンテーションが必要であり、特にアノテーションの能力が制限されている場合や新しいカテゴリの発見が望まれている場合などである。
3次元ボリュームデータの多くは本質的に階層的であるという観察から,双曲型潜在空間を持つ変分型オートエンコーダ(VAE)と,3次元画像内の階層構造をより良くモデル化したジャイロプレーン畳み込み層を用いて,教師なしセグメンテーションのための3次元パッチの効果的な表現を学習することを提案する。
また,階層的三重項損失とマルチスケールパッチサンプリングスキームを導入し,粒度の異なるレベル間の関係を埋め込む。
階層型玩具データセット,BraTS全腫瘍データセット,低温電子顕微鏡データを用いた非教師なし3次元セグメンテーションにおけるハイパーボリック表現の有効性を実証した。
関連論文リスト
- Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion [31.736235596070937]
軽量マルチサロゲート融合(MSF)を用いた新しい3DセグメンテーションフレームワークMSFSegを提案する。
MSFSegは、1つまたは数個の注釈付き2Dスライスまたは3Dシーケンスセグメントを備えた、目に見えない3Dオブジェクト/組織(トレーニング中)を自動的に分割することができる。
提案するMSFモジュールは, ラベル付きスライスと少数のラベル付きスライス/シーケンス間の包括的および多彩な相関関係を, 複数の指定されたサロゲートを介して抽出する。
論文 参考訳(メタデータ) (2024-08-26T17:15:37Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
我々は3次元シーンを表すニューラル・レージアンス・フィールド(NeRF)内の新しい特徴場を学習する。
本手法は、ビュー一貫性の多粒性2Dセグメンテーションを入力とし、3D一貫性のセグメンテーションの階層構造を出力として生成する。
提案手法と,多視点画像と多粒性セグメンテーションを用いた合成データセットのベースラインの評価を行い,精度と視点整合性を向上したことを示す。
論文 参考訳(メタデータ) (2024-05-30T04:14:58Z) - OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive
Learning [31.234212614311424]
OmniSeg3Dは,すべてのものを同時に3Dでセグメント化するための全次元セグメント化手法である。
不整合な2Dセグメンテーションによって引き起こされる課題に対処するため、このフレームワークはグローバルな一貫した3D機能フィールドを生み出す。
提案手法が高品質な3次元セグメンテーションと正確な階層構造理解に与える影響を実験により実証した。
論文 参考訳(メタデータ) (2023-11-20T11:04:59Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - Unsupervised Discovery of 3D Hierarchical Structure with Generative
Diffusion Features [22.657405088126012]
拡散モデルの特徴は3次元バイオメディカル画像において異なる階層レベルを捉えている。
我々は3次元ボリュームを意味のあるネストされたサブボリュームに分解することを奨励する予測的教師なしセグメンテーションネットワークを訓練する。
われわれのモデルは、既存の教師なし構造発見手法よりも、難解な合成データセットや現実世界の脳腫瘍MRIデータセットよりも優れた性能を達成している。
論文 参考訳(メタデータ) (2023-04-28T19:37:17Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
本稿では,ラベル付3次元形状とラベル付3次元データの量から3次元分割を効果的に学習するための半教師付き手法を提案する。
ラベルのないデータに対して,3次元形状の摂動コピー間のネットワーク予測の整合性を確保するために,新しい多レベル整合性損失を提案する。
ラベル付きデータに対して,より構造的な変化を伴ってラベル付き3次元形状を増強し,トレーニングを強化するシンプルな部分置換法を開発した。
論文 参考訳(メタデータ) (2022-04-19T11:48:24Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Fine-Grained 3D Shape Classification with Hierarchical Part-View
Attentions [70.0171362989609]
本稿では,FG3D-Netと呼ばれる新しい3次元形状分類手法を提案する。
詳細な3次元形状データセットに基づく結果から,本手法が他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-05-26T06:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。