Pedestrian Trajectory Prediction using Context-Augmented Transformer
Networks
- URL: http://arxiv.org/abs/2012.01757v1
- Date: Thu, 3 Dec 2020 08:43:12 GMT
- Title: Pedestrian Trajectory Prediction using Context-Augmented Transformer
Networks
- Authors: Khaled Saleh
- Abstract summary: We introduce a framework based on the transformer networks that were shown recently to be more efficient and outperformed RNNs in many sequential-based tasks.
We have evaluated our framework on two real-life datasets of pedestrians in shared urban traffic environments.
- Score: 3.0839245814393728
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Forecasting the trajectory of pedestrians in shared urban traffic
environments is still considered one of the challenging problems facing the
development of autonomous vehicles (AVs). In the literature, this problem is
often tackled using recurrent neural networks (RNNs). Despite the powerful
capabilities of RNNs in capturing the temporal dependency in the pedestrians'
motion trajectories, they were argued to be challenged when dealing with longer
sequential data. Thus, in this work, we are introducing a framework based on
the transformer networks that were shown recently to be more efficient and
outperformed RNNs in many sequential-based tasks. We relied on a fusion of the
past positional information, agent interactions information and scene physical
semantics information as an input to our framework in order to provide a robust
trajectory prediction of pedestrians. We have evaluated our framework on two
real-life datasets of pedestrians in shared urban traffic environments and it
has outperformed the compared baseline approaches in both short-term and
long-term prediction horizons.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Traffic-Twitter Transformer: A Nature Language Processing-joined
Framework For Network-wide Traffic Forecasting [14.71745498591372]
We propose a flexible and comprehensive framework to predict physical-aware long-term traffic conditions for public users and transportation agencies.
A correlation study and a linear regression model were first implemented to evaluate the significance of the correlation between two time-series data, traffic intensity and Twitter data intensity.
Two time-series data were then fed into our proposed social-aware framework, Traffic-Twitter Transformer, which integrated Nature Language representations into time-series records for long-term traffic prediction.
arXiv Detail & Related papers (2022-06-19T20:17:15Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Context-Aware Scene Prediction Network (CASPNet) [3.390468002706074]
We jointly learn and predict the motion of all road users in a scene using a novel convolutional neural network (CNN) and recurrent neural network (RNN) based architecture.
Our approach reaches state-of-the-art results in the prediction benchmark.
arXiv Detail & Related papers (2022-01-18T12:52:01Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information [0.0]
This paper exploits simple structures for predicting pedestrian trajectories, based on Transformer Networks.
We adapt their use to the problem of vehicle trajectory prediction in urban scenarios in prediction horizons up to 5 seconds.
Our model achieves state-of-the-art results and proves to be flexible and adaptable to different types of urban contexts.
arXiv Detail & Related papers (2021-06-01T15:18:55Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
We propose a novel framework based on feed-forward network (FFN) for ETA, FFN with Multi-factor self-Attention (FMA-ETA)
The novel Multi-factor self-attention mechanism is proposed to deal with different category features and aggregate the information purposefully.
Experiments show FMA-ETA is competitive with state-of-the-art methods in terms of the prediction accuracy with significantly better inference speed.
arXiv Detail & Related papers (2020-06-07T08:10:47Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.