Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information
- URL: http://arxiv.org/abs/2106.00559v1
- Date: Tue, 1 Jun 2021 15:18:55 GMT
- Title: Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information
- Authors: A. Quintanar, D. Fern\'andez-Llorca, I. Parra, R. Izquierdo, M. A.
Sotelo
- Abstract summary: This paper exploits simple structures for predicting pedestrian trajectories, based on Transformer Networks.
We adapt their use to the problem of vehicle trajectory prediction in urban scenarios in prediction horizons up to 5 seconds.
Our model achieves state-of-the-art results and proves to be flexible and adaptable to different types of urban contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the behavior of road users is of vital importance for the
development of trajectory prediction systems. In this context, the latest
advances have focused on recurrent structures, establishing the social
interaction between the agents involved in the scene. More recently, simpler
structures have also been introduced for predicting pedestrian trajectories,
based on Transformer Networks, and using positional information. They allow the
individual modelling of each agent's trajectory separately without any complex
interaction terms. Our model exploits these simple structures by adding
augmented data (position and heading), and adapting their use to the problem of
vehicle trajectory prediction in urban scenarios in prediction horizons up to 5
seconds. In addition, a cross-performance analysis is performed between
different types of scenarios, including highways, intersections and
roundabouts, using recent datasets (inD, rounD, highD and INTERACTION). Our
model achieves state-of-the-art results and proves to be flexible and adaptable
to different types of urban contexts.
Related papers
- PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
We propose a novel framework that relies on different data modalities to predict future trajectories and crossing actions of pedestrians from an ego-centric perspective.
We show that our model improves state-of-the-art in trajectory and action prediction by up to 22% and 13% respectively on various metrics.
arXiv Detail & Related papers (2022-10-14T15:12:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - SCOUT: Socially-COnsistent and UndersTandable Graph Attention Network
for Trajectory Prediction of Vehicles and VRUs [0.0]
SCOUT is a novel Attention-based Graph Neural Network that uses a flexible and generic representation of the scene as a graph.
We explore three different attention mechanisms and test our scheme with both bird-eye-view and on-vehicle urban data.
We evaluate our model's flexibility and transferability by testing it under completely new scenarios on RounD dataset.
arXiv Detail & Related papers (2021-02-12T06:29:28Z) - Pedestrian Trajectory Prediction using Context-Augmented Transformer
Networks [3.0839245814393728]
We introduce a framework based on the transformer networks that were shown recently to be more efficient and outperformed RNNs in many sequential-based tasks.
We have evaluated our framework on two real-life datasets of pedestrians in shared urban traffic environments.
arXiv Detail & Related papers (2020-12-03T08:43:12Z) - Multi-Modal Hybrid Architecture for Pedestrian Action Prediction [14.032334569498968]
We propose a novel multi-modal prediction algorithm that incorporates different sources of information captured from the environment to predict future crossing actions of pedestrians.
Using the existing 2D pedestrian behavior benchmarks and a newly annotated 3D driving dataset, we show that our proposed model achieves state-of-the-art performance in pedestrian crossing prediction.
arXiv Detail & Related papers (2020-11-16T15:17:58Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.