Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks
- URL: http://arxiv.org/abs/2207.09792v2
- Date: Thu, 15 Aug 2024 03:25:15 GMT
- Title: Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks
- Authors: Jianfeng Huang, Chenyang Li, Yimin Lin, Shiguo Lian,
- Abstract summary: We propose Vision Transformer based (VIT) unsupervised anomaly detection network.
It utilizes a hierarchical task learning and human experience to enhance its interpretability.
Our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods.
- Score: 6.393288885927437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is hard to collect enough flaw images for training deep learning network in industrial production. Therefore, existing industrial anomaly detection methods prefer to use CNN-based unsupervised detection and localization network to achieve this task. However, these methods always fail when there are varieties happened in new signals since traditional end-to-end networks suffer barriers of fitting nonlinear model in high-dimensional space. Moreover, they have a memory library by clustering the feature of normal images essentially, which cause it is not robust to texture change. To this end, we propose the Vision Transformer based (VIT-based) unsupervised anomaly detection network. It utilizes a hierarchical task learning and human experience to enhance its interpretability. Our network consists of pattern generation and comparison networks. Pattern generation network uses two VIT-based encoder modules to extract the feature of two consecutive image patches, then uses VIT-based decoder module to learn the human designed style of these features and predict the third image patch. After this, we use the Siamese-based network to compute the similarity of the generation image patch and original image patch. Finally, we refine the anomaly localization by the bi-directional inference strategy. Comparison experiments on public dataset MVTec dataset show our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods. In addition, we give a qualitative illustration on our own leather and cloth datasets. The accurate segment results strongly prove the accuracy of our method in anomaly detection.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - A Prototype-Based Neural Network for Image Anomaly Detection and Localization [10.830337829732915]
This paper proposes ProtoAD, a prototype-based neural network for image anomaly detection and localization.
First, the patch features of normal images are extracted by a deep network pre-trained on nature images.
ProtoAD achieves competitive performance compared to the state-of-the-art methods with a higher inference speed.
arXiv Detail & Related papers (2023-10-04T04:27:16Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
Most advanced unsupervised anomaly detection (UAD) methods rely on modeling feature representations of frozen encoder networks pre-trained on large-scale datasets.
We propose a novel epistemic UAD method, namely ReContrast, which optimize the entire network to reduce biases towards the pre-trained image domain.
We conduct experiments across two popular industrial defect detection benchmarks and three medical image UAD tasks, which shows our superiority over current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-05T05:21:15Z) - ISSTAD: Incremental Self-Supervised Learning Based on Transformer for
Anomaly Detection and Localization [12.975540251326683]
We introduce a novel approach based on the Transformer backbone network.
We train a Masked Autoencoder (MAE) model solely on normal images.
In the subsequent stage, we apply pixel-level data augmentation techniques to generate corrupted normal images.
This process allows the model to learn how to repair corrupted regions and classify the status of each pixel.
arXiv Detail & Related papers (2023-03-30T13:11:26Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Time Series Imaging for Link Layer Anomaly Classification in Wireless
Networks [0.6015898117103068]
In this paper, we perform a first time analysis of image-based representation techniques for wireless anomaly detection.
We propose a new deep learning architecture enabling accurate anomaly detection.
Our results demonstrate the potential of transformation of time series signals to images to improve classification performance.
arXiv Detail & Related papers (2021-04-02T10:23:06Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.