Every Corporation Owns Its Structure: Corporate Credit Ratings via Graph
Neural Networks
- URL: http://arxiv.org/abs/2012.01933v1
- Date: Fri, 27 Nov 2020 02:57:14 GMT
- Title: Every Corporation Owns Its Structure: Corporate Credit Ratings via Graph
Neural Networks
- Authors: Bojing Feng, Haonan Xu, Wenfang Xue and Bindang Xue
- Abstract summary: We propose a novel model, Corporate Credit Rating via Graph Neural Networks, CCR-GNN for brevity.
We firstly construct individual graphs for each corporation based on self-outer product then use GNN to model the feature interaction explicitly.
Experiments conducted on the Chinese public-listed corporate rating dataset, prove that CCR-GNN outperforms the state-of-the-art methods consistently.
- Score: 2.7910505923792637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credit rating is an analysis of the credit risks associated with a
corporation, which reflects the level of the riskiness and reliability in
investing, and plays a vital role in financial risk. There have emerged many
studies that implement machine learning and deep learning techniques which are
based on vector space to deal with corporate credit rating. Recently,
considering the relations among enterprises such as loan guarantee network,
some graph-based models are applied in this field with the advent of graph
neural networks. But these existing models build networks between corporations
without taking the internal feature interactions into account. In this paper,
to overcome such problems, we propose a novel model, Corporate Credit Rating
via Graph Neural Networks, CCR-GNN for brevity. We firstly construct individual
graphs for each corporation based on self-outer product and then use GNN to
model the feature interaction explicitly, which includes both local and global
information. Extensive experiments conducted on the Chinese public-listed
corporate rating dataset, prove that CCR-GNN outperforms the state-of-the-art
methods consistently.
Related papers
- Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction [4.0990577062436815]
We present a model for credit risk assessment leveraging a dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network.
We test our methodology in a behavioural credit scoring context using a dataset provided by U.S. mortgage financier Freddie Mac.
arXiv Detail & Related papers (2024-02-01T03:20:53Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - TrustGNN: Graph Neural Network based Trust Evaluation via Learnable
Propagative and Composable Nature [63.78619502896071]
Trust evaluation is critical for many applications such as cyber security, social communication and recommender systems.
We propose a new GNN based trust evaluation method named TrustGNN, which integrates smartly the propagative and composable nature of trust graphs.
Specifically, TrustGNN designs specific propagative patterns for different propagative processes of trust, and distinguishes the contribution of different propagative processes to create new trust.
arXiv Detail & Related papers (2022-05-25T13:57:03Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - On the combination of graph data for assessing thin-file borrowers'
creditworthiness [0.0]
We introduce a framework to improve credit scoring models by blending several Graph Representation Learning methods.
We validated this framework using a unique dataset that characterizes the relationships and credit history for the entire population of a Latin American country.
In Corporate lending, where the gain is much higher, it confirms that evaluating an unbanked company cannot solely consider its features.
arXiv Detail & Related papers (2021-11-26T18:45:23Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Every Corporation Owns Its Image: Corporate Credit Ratings via
Convolutional Neural Networks [2.867517731896504]
We analyze the performance of traditional machine learning models in predicting corporate credit rating.
We propose a novel end-to-end method, Corporate Credit Ratings via Convolutional Neural Networks, CCR-CNN.
CCR-CNN outperforms the state-of-the-art methods consistently.
arXiv Detail & Related papers (2020-12-03T01:01:34Z) - Neural Network-based Automatic Factor Construction [58.96870869237197]
This paper proposes Neural Network-based Automatic Factor Construction (NNAFC)
NNAFC can automatically construct diversified financial factors based on financial domain knowledge.
New factors constructed by NNAFC can always improve the return, Sharpe ratio, and the max draw-down of a multi-factor quantitative investment strategy.
arXiv Detail & Related papers (2020-08-14T07:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.