Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment
- URL: http://arxiv.org/abs/2012.01980v1
- Date: Tue, 1 Dec 2020 23:39:01 GMT
- Title: Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment
- Authors: Wei Zhou and Zhibo Chen
- Abstract summary: Existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem.
We propose to use pyramid features learning to build a DNN with hierarchical multi-scale features for distorted image quality prediction.
Our proposed network is optimized in a deep end-to-end supervision manner.
- Score: 20.7146855562825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image quality assessment (IQA) aims to estimate human perception based image
visual quality. Although existing deep neural networks (DNNs) have shown
significant effectiveness for tackling the IQA problem, it still needs to
improve the DNN-based quality assessment models by exploiting efficient
multi-scale features. In this paper, motivated by the human visual system (HVS)
combining multi-scale features for perception, we propose to use pyramid
features learning to build a DNN with hierarchical multi-scale features for
distorted image quality prediction. Our model is based on both residual maps
and distorted images in luminance domain, where the proposed network contains
spatial pyramid pooling and feature pyramid from the network structure. Our
proposed network is optimized in a deep end-to-end supervision manner. To
validate the effectiveness of the proposed method, extensive experiments are
conducted on four widely-used image quality assessment databases, demonstrating
the superiority of our algorithm.
Related papers
- Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Blind Image Quality Assessment Using Multi-Stream Architecture with Spatial and Channel Attention [4.983104446206061]
BIQA (Blind Image Quality Assessment) is an important field of study that evaluates images automatically.
Most algorithms generate quality without emphasizing the important region of interest.
A multi-stream spatial and channel attention-based algorithm is being proposed to solve this problem.
arXiv Detail & Related papers (2023-07-19T09:36:08Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - Blind Multimodal Quality Assessment: A Brief Survey and A Case Study of
Low-light Images [73.27643795557778]
Blind image quality assessment (BIQA) aims at automatically and accurately forecasting objective scores for visual signals.
Recent developments in this field are dominated by unimodal solutions inconsistent with human subjective rating patterns.
We present a unique blind multimodal quality assessment (BMQA) of low-light images from subjective evaluation to objective score.
arXiv Detail & Related papers (2023-03-18T09:04:55Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
We propose to model the quality degradation in perceptual space from a statistical distribution perspective.
The quality is measured based upon the Wasserstein distance in the deep feature domain.
The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination.
arXiv Detail & Related papers (2022-08-05T02:46:12Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Deep Superpixel-based Network for Blind Image Quality Assessment [4.079861933099766]
The goal in a blind image quality assessment (BIQA) model is to simulate the process of evaluating images by human eyes.
We propose a deep adaptive superpixel-based network, namely DSN-IQA, to assess the quality of image based on multi-scale and superpixel segmentation.
arXiv Detail & Related papers (2021-10-13T08:26:58Z) - Consumer Image Quality Prediction using Recurrent Neural Networks for
Spatial Pooling [13.750624267664156]
We propose an image quality model that attempts to mimic the attention mechanism of human visual system (HVS) by using a recurrent neural network (RNN)
The experimental study, conducted by using images with different resolutions from two recently published image quality datasets, indicates that the quality prediction accuracy of the proposed method is competitive against benchmark models representing the state-of-the-art, and the proposed method also performs consistently on different resolution versions of the same dataset.
arXiv Detail & Related papers (2021-06-02T03:31:44Z) - Multi-pooled Inception features for no-reference image quality
assessment [0.0]
We propose a new approach for image quality assessment using convolutional neural networks (CNNs)
In contrast to previous methods, we do not take patches from the input image. Instead, the input image is treated as a whole and is run through a pretrained CNN body to extract resolution-independent, multi-level deep features.
We demonstrate that our best proposal - called MultiGAP-NRIQA - is able to provide state-of-the-art results on three benchmark IQA databases.
arXiv Detail & Related papers (2020-11-10T15:09:49Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
Blind or no-reference image quality assessment (NR-IQA) is a fundamental, unsolved, and yet challenging problem.
We propose a simple and yet effective general-purpose no-reference (NR) image quality assessment framework based on multi-task learning.
Our model employs distortion types as well as subjective human scores to predict image quality.
arXiv Detail & Related papers (2020-06-06T05:04:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.