Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment
- URL: http://arxiv.org/abs/2504.17234v1
- Date: Thu, 24 Apr 2025 04:06:07 GMT
- Title: Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment
- Authors: Zhiqiang Lao, Heather Yu,
- Abstract summary: We propose a novel IQA approach that bridges the gap between deep learning methods and human perception.<n>Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately.<n>This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of artificial intelligence and widespread use of smartphones have resulted in an exponential growth of image data, both real (camera-captured) and virtual (AI-generated). This surge underscores the critical need for robust image quality assessment (IQA) methods that accurately reflect human visual perception. Traditional IQA techniques primarily rely on spatial features - such as signal-to-noise ratio, local structural distortions, and texture inconsistencies - to identify artifacts. While effective for unprocessed or conventionally altered images, these methods fall short in the context of modern image post-processing powered by deep neural networks (DNNs). The rise of DNN-based models for image generation, enhancement, and restoration has significantly improved visual quality, yet made accurate assessment increasingly complex. To address this, we propose a novel IQA approach that bridges the gap between deep learning methods and human perception. Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately. These features are then combined with conventional IQA metrics to provide a more comprehensive evaluation framework. This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process, which first interprets overall structure before attending to fine-grained elements. The final stage employs a multilayer perceptron (MLP) to map the integrated features into a concise quality score. Experimental results demonstrate that our method achieves improved consistency with human perceptual judgments compared to existing IQA models.
Related papers
- PIGUIQA: A Physical Imaging Guided Perceptual Framework for Underwater Image Quality Assessment [59.9103803198087]
We propose a Physical Imaging Guided perceptual framework for Underwater Image Quality Assessment (UIQA)<n>By leveraging underwater radiative transfer theory, we integrate physics-based imaging estimations to establish quantitative metrics for these distortions.<n>The proposed model accurately predicts image quality scores and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-12-20T03:31:45Z) - GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
A major drawback of state-of-the-art NR-IQA methods is their limited ability to generalize across diverse IQA settings.
Recent text-to-image generative models generate meaningful visual concepts with fine details related to text concepts.
In this work, we leverage the denoising process of such diffusion models for generalized IQA by understanding the degree of alignment between learnable quality-aware text prompts and images.
arXiv Detail & Related papers (2024-06-07T05:46:39Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
No-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality.
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment [78.21609845377644]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.<n>We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.<n>Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Blind Image Quality Assessment via Transformer Predicted Error Map and
Perceptual Quality Token [19.67014524146261]
No-reference image quality assessment (NR-IQA) has gained increasing attention recently.
We propose a Transformer based NR-IQA model using a predicted objective error map and perceptual quality token.
Our proposed method outperforms the current state-of-the-art in both authentic and synthetic image databases.
arXiv Detail & Related papers (2023-05-16T11:17:54Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
We propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting.
We deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model.
Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases.
arXiv Detail & Related papers (2023-04-02T05:06:51Z) - Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network [20.835800149919145]
Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality.
There is a performance drop when assessing distortion images generated by generative adversarial network (GAN) with seemingly realistic texture.
We propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task.
arXiv Detail & Related papers (2022-04-22T03:59:18Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
Existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem.
We propose to use pyramid features learning to build a DNN with hierarchical multi-scale features for distorted image quality prediction.
Our proposed network is optimized in a deep end-to-end supervision manner.
arXiv Detail & Related papers (2020-12-01T23:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.