Consumer Image Quality Prediction using Recurrent Neural Networks for
Spatial Pooling
- URL: http://arxiv.org/abs/2106.00918v1
- Date: Wed, 2 Jun 2021 03:31:44 GMT
- Title: Consumer Image Quality Prediction using Recurrent Neural Networks for
Spatial Pooling
- Authors: Jari Korhonen, Yicheng Su, Junyong You
- Abstract summary: We propose an image quality model that attempts to mimic the attention mechanism of human visual system (HVS) by using a recurrent neural network (RNN)
The experimental study, conducted by using images with different resolutions from two recently published image quality datasets, indicates that the quality prediction accuracy of the proposed method is competitive against benchmark models representing the state-of-the-art, and the proposed method also performs consistently on different resolution versions of the same dataset.
- Score: 13.750624267664156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Promising results for subjective image quality prediction have been achieved
during the past few years by using convolutional neural networks (CNN).
However, the use of CNNs for high resolution image quality assessment remains a
challenge, since typical CNN architectures have been designed for small
resolution input images. In this study, we propose an image quality model that
attempts to mimic the attention mechanism of human visual system (HVS) by using
a recurrent neural network (RNN) for spatial pooling of the features extracted
from different spatial areas (patches) by a deep CNN-based feature extractor.
The experimental study, conducted by using images with different resolutions
from two recently published image quality datasets, indicates that the quality
prediction accuracy of the proposed method is competitive against benchmark
models representing the state-of-the-art, and the proposed method also performs
consistently on different resolution versions of the same dataset.
Related papers
- Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Spherical CNN for Medical Imaging Applications: Importance of
Equivariance in image reconstruction and denoising [0.0]
equivariant networks are efficient and high-performance approaches for tomography applications.
We evaluate the efficacy of equivariant spherical CNNs for 2- and 3- dimensional medical imaging problems.
We propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools.
arXiv Detail & Related papers (2023-07-06T21:18:47Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems.
This paper addresses two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one.
Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
arXiv Detail & Related papers (2022-07-22T10:05:36Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Segmentation of Roads in Satellite Images using specially modified U-Net
CNNs [0.0]
The aim of this paper is to build an image classifier for satellite images of urban scenes that identifies the portions of the images in which a road is located.
Unlike conventional computer vision algorithms, convolutional neural networks (CNNs) provide accurate and reliable results on this task.
arXiv Detail & Related papers (2021-09-29T19:08:32Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
Existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem.
We propose to use pyramid features learning to build a DNN with hierarchical multi-scale features for distorted image quality prediction.
Our proposed network is optimized in a deep end-to-end supervision manner.
arXiv Detail & Related papers (2020-12-01T23:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.