論文の概要: Source location on multilayer networks
- arxiv url: http://arxiv.org/abs/2012.02023v1
- Date: Thu, 3 Dec 2020 16:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-22 05:27:29.201254
- Title: Source location on multilayer networks
- Title(参考訳): 多層ネットワーク上のソース位置
- Authors: Robert Paluch, {\L}ukasz G. Gajewski, K. Suchecki, Janusz A. Ho{\l}yst
- Abstract要約: 合成ネットワーク上でのソース位置推定手法を開発した。
非自明で、おそらく驚くべき現象を観察し、システム内の人が観察すればするほど結果が悪化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays it is not uncommon to have to deal with dissemination on
multi-layered networks and often finding the source of said propagation can be
a crucial task. In this paper we tackle this exact problem with a maximum
likelihood approach that we extend to be operational on multi-layered graphs.
We test our method for source location estimation on synthetic networks and
outline its potential strengths and limitations. We also observe some
non-trivial and perhaps surprising phenomena where the more of the system one
observes the worse the results become whereas increased problem complexity in
the form of more layers can actually improve our performance.
- Abstract(参考訳): 今日では、多層ネットワークの拡散に対処しなければならないことは珍しくなく、その伝播源を見つけることが重要な課題である。
本稿では,多層グラフ上での操作を拡張可能な最大可能性アプローチを用いて,この問題に対処する。
合成ネットワーク上でのソース位置推定の手法を検証し,その潜在的な強度と限界について概説する。
また、システム側が結果の悪化を観測するほど、より多くのレイヤの形で問題が複雑化することによって、パフォーマンスが実際に向上する、非自明でおそらく驚くべき現象も観察します。
関連論文リスト
- Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Cascaded Compressed Sensing Networks: A Reversible Architecture for
Layerwise Learning [11.721183551822097]
提案手法は, 補助ネットワークを必要とせずに, 圧縮センシングにより各層にネットワークをモデル化することにより, 対象の伝搬を実現することができることを示す。
実験により,提案手法は補助的なネットワークベース手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2021-10-20T05:21:13Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
受容場(ERF)とネットワーク内の空間的特徴の高分解能は、高分解能密度推定を提供することに不可欠である。
空間的特徴の解像度を高く保ちながら、より大きな受容場を提供できるネットワークアーキテクチャを設計するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-09T23:15:34Z) - Optimal transport in multilayer networks [68.8204255655161]
本稿では,各層上の最適フローが,コストの最小化に寄与するモデルを提案する。
アプリケーションとして,各層が異なる輸送システムに関連付けられている交通ネットワークを考察する。
この結果の例をボルドー市とバスと路面電車の2層ネットワークで示し、ある状況下では路面電車網の存在が道路網の交通を著しく覆い隠している。
論文 参考訳(メタデータ) (2021-06-14T07:33:09Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
オールオンス量子化ネットワークを効率的にトレーニングするための新しい共同知識伝達アプローチを開発しています。
具体的には、低精度の学生に知識を伝達するための高精度のエンクォータを選択するための適応的選択戦略を提案する。
知識を効果的に伝達するために,低精度の学生ネットワークのブロックを高精度の教師ネットワークのブロックにランダムに置き換える動的ブロックスワッピング法を開発した。
論文 参考訳(メタデータ) (2021-03-02T03:09:03Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Error estimate for a universal function approximator of ReLU network
with a local connection [4.111899441919163]
我々は、局所接続で特定のニューラルネットワークアーキテクチャの近似誤差を解析し、完全な接続を持つものよりも高い適用率を示す。
私たちの誤差推定は、隠れた層の深さを制御するパラメータと、隠れた層の幅を制御するパラメータの2つに依存します。
論文 参考訳(メタデータ) (2020-09-03T05:58:46Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - A new multilayer network construction via Tensor learning [0.0]
多層ネットワークは、異なる複雑なシステムの依存情報を抽出し、提供するのに適していることが判明した。
本研究では,データから直接多層ネットワークを構築するために,タッカーテンソル自動回帰に基づく新しい手法を提案する。
定常分数差の財務データに対する本手法の適用について述べる。
論文 参考訳(メタデータ) (2020-04-11T11:06:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。