論文の概要: Error estimate for a universal function approximator of ReLU network
with a local connection
- arxiv url: http://arxiv.org/abs/2009.01461v1
- Date: Thu, 3 Sep 2020 05:58:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 07:16:08.001903
- Title: Error estimate for a universal function approximator of ReLU network
with a local connection
- Title(参考訳): 局所接続を持つReLUネットワークの普遍関数近似器の誤差推定
- Authors: Jae-Mo Kang and Sunghwan Moon
- Abstract要約: 我々は、局所接続で特定のニューラルネットワークアーキテクチャの近似誤差を解析し、完全な接続を持つものよりも高い適用率を示す。
私たちの誤差推定は、隠れた層の深さを制御するパラメータと、隠れた層の幅を制御するパラメータの2つに依存します。
- 参考スコア(独自算出の注目度): 4.111899441919163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have shown high successful performance in a wide range of
tasks, but further studies are needed to improve its performance. We analyze
the approximation error of the specific neural network architecture with a
local connection and higher application than one with the full connection
because the local-connected network can be used to explain diverse neural
networks such as CNNs. Our error estimate depends on two parameters: one
controlling the depth of the hidden layer, and the other, the width of the
hidden layers.
- Abstract(参考訳): ニューラルネットワークは、幅広いタスクで高いパフォーマンスを示しているが、パフォーマンスを改善するためにさらなる研究が必要である。
我々は、CNNなどの多種多様なニューラルネットワークを説明するために、局所的な接続で特定のニューラルネットワークアーキテクチャの近似誤差を解析し、完全に接続されたネットワークよりも高いアプリケーションで解析する。
私たちの誤差推定は、隠れた層の深さを制御するパラメータと、隠れた層の幅を制御するパラメータの2つに依存します。
関連論文リスト
- On the growth of the parameters of approximating ReLU neural networks [0.542249320079018]
この研究は、与えられた滑らかな関数を近似する完全連結フィードフォワードReLUニューラルネットワークの解析に焦点を当てる。
アーキテクチャの増大にともなう,従来の普遍近似特性とは対照的に,近似ネットワークのパラメータの増大が懸念される。
論文 参考訳(メタデータ) (2024-06-21T07:45:28Z) - Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
より深いニューラルネットワーク(DeNN)と、柔軟な数のレイヤと、限られた隠れたレイヤを持つより広いニューラルネットワーク(WeNN)を比較します。
より多くのパラメータがWeNNを好む傾向にあるのに対し、サンプルポイントの増加と損失関数の規則性の向上は、DeNNの採用に傾いている。
論文 参考訳(メタデータ) (2024-01-31T20:10:10Z) - Certified Invertibility in Neural Networks via Mixed-Integer Programming [16.64960701212292]
ニューラルネットワークは敵の攻撃に弱いことが知られている。
ネットワークの決定に影響を与えない大きな、意味のある摂動が存在するかもしれない。
ニューラルネットワーク間の変換における可逆性検証に,我々の知見がどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-27T15:40:38Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
対象関数のクラスは、一般化帯域制限関数とソボレフ型球である。
以上の結果から、乗法ニューラルネットワークは、これらの関数をはるかに少ない層とニューロンで近似できることを示した。
これらの結果は、乗法ゲートが標準フィードフォワード層より優れ、ニューラルネットワーク設計を改善する可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-01-11T17:57:33Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - On the approximation of functions by tanh neural networks [0.0]
我々は、ソボレフ規則の近似で生じる高階ソボレフノルムにおける誤差の境界を導出する。
2つの隠れ層しか持たないtanhニューラルネットワークは、より深いreluニューラルネットワークよりも、同等あるいはそれ以上の速度で近似関数に十分であることを示す。
論文 参考訳(メタデータ) (2021-04-18T19:30:45Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。