論文の概要: Discriminatory Expressions to Produce Interpretable Models in Short
Documents
- arxiv url: http://arxiv.org/abs/2012.02104v2
- Date: Mon, 15 Feb 2021 14:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 01:19:38.900343
- Title: Discriminatory Expressions to Produce Interpretable Models in Short
Documents
- Title(参考訳): 短い文書中の解釈可能なモデルを生成する識別表現
- Authors: Manuel Francisco and Juan Luis Castro
- Abstract要約: State-of-the-artモデルは、社会的影響のある問題の解決に使用すべきではないブラックボックスである。
本稿では,少ないが有意義な特徴を用いることで,理解度を向上させる機能選択機構を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Social Networking Sites (SNS) are one of the most important ways of
communication. In particular, microblogging sites are being used as analysis
avenues due to their peculiarities (promptness, short texts...). There are
countless researches that use SNS in novel manners, but machine learning has
focused mainly in classification performance rather than interpretability
and/or other goodness metrics. Thus, state-of-the-art models are black boxes
that should not be used to solve problems that may have a social impact. When
the problem requires transparency, it is necessary to build interpretable
pipelines. Although the classifier may be interpretable, resulting models are
too complex to be considered comprehensible, making it impossible for humans to
understand the actual decisions. This paper presents a feature selection
mechanism that is able to improve comprehensibility by using less but more
meaningful features while achieving good performance in microblogging contexts
where interpretability is mandatory. Moreover, we present a ranking method to
evaluate features in terms of statistical relevance and bias. We conducted
exhaustive tests with five different datasets in order to evaluate
classification performance, generalisation capacity and complexity of the
model. Results show that our proposal is better and the most stable one in
terms of accuracy, generalisation and comprehensibility.
- Abstract(参考訳): SNS(Social Networking Sites)は、コミュニケーションの最も重要な方法の一つである。
特に、マイクロブログサイトは、その特異性(速さ、短文...)から分析の道として使われている。
SNSを新しい方法で利用する研究は数え切れないほどあるが、機械学習は解釈可能性やその他の良さの指標よりも、主に分類性能に焦点を当てている。
したがって、最先端のモデルは社会的影響のある問題を解決するために使うべきではないブラックボックスである。
問題が透明性を必要とする場合、解釈可能なパイプラインを構築する必要がある。
分類器は解釈可能であるが、結果として得られるモデルは複雑すぎて理解できないため、人間が実際の決定を理解することは不可能である。
本稿では,解釈性が必須となるマイクロブロッギング環境において,より意味の少ない特徴を用いることで,理解度を向上させる機能選択機構を提案する。
さらに,統計的関連性とバイアスの観点から特徴を評価するためのランキング手法を提案する。
モデルの分類性能, 一般化能力, 複雑さを評価するため, 5つの異なるデータセットを用いて総合的な試験を行った。
その結果,提案手法は正確性,一般化,理解の面では最も安定であることがわかった。
関連論文リスト
- Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
ニューラルネットワークの解釈性は、3つの重要な要件間のトレードオフである。
本稿では,人間中心の解釈可能性を保証する,解釈可能なニューラルネットワークのファミリであるInterpretCCを提案する。
論文 参考訳(メタデータ) (2024-02-05T11:55:50Z) - Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
線形モデルとツリーモデルの両方がニューラルネットワークよりも厳密に解釈可能であることを示す。
ユーザが好みに基づいて説明をパーソナライズすることのできる、嗜好に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T11:38:58Z) - Explaining Relation Classification Models with Semantic Extents [1.7604348079019634]
説明責任の欠如は、多くの現実世界のアプリケーションで現在複雑になっている要素である。
関係分類タスクにおける決定パターンを解析する概念である意味範囲を導入する。
我々は、人やモデルの意味範囲を決定するためのアノテーションツールとソフトウェアフレームワークを提供する。
論文 参考訳(メタデータ) (2023-08-04T08:17:52Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy [7.215903549622416]
最適分類木を学習するための混合整数最適化フレームワークを提案する。
我々は、一般的なデータセットの公平な分類のための最先端アプローチに対して、我々の手法をベンチマークする。
我々の手法は、ほぼ完全に一致した決定を一貫して見つけ出すが、他の手法は滅多にない。
論文 参考訳(メタデータ) (2022-01-24T19:47:10Z) - More Than Words: Towards Better Quality Interpretations of Text
Classifiers [16.66535643383862]
MLモデルの入力インタフェースを考えると、トークンベースの解釈性は便利な第1選択であるが、あらゆる状況において最も効果的ではないことを示す。
1)ランダム化テストにより測定されるほど頑健であり,2)SHAPのような近似に基づく手法を用いた場合の変動性が低く,3)言語的コヒーレンスがより高い水準にある場合の人間には理解できない。
論文 参考訳(メタデータ) (2021-12-23T10:18:50Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
スコアリングモデルの驚くべき逆方向の脆さの原因について検討する。
のモデルとして訓練されているにもかかわらず、単語の袋のように振る舞うことを示唆している。
高い精度で試料を発生させる過敏性と過敏性を検出できる検出ベース保護モデルを提案する。
論文 参考訳(メタデータ) (2021-09-24T03:49:38Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。